![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposeqd | Structured version Visualization version GIF version |
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
tposeqd.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
tposeqd | ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposeqd.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | tposeq 7506 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 tpos ctpos 7503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-mpt 4864 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-tpos 7504 |
This theorem is referenced by: oppcval 16580 oppchomfval 16581 oppccofval 16583 oppchomfpropd 16593 oppcmon 16605 oppgval 17984 oppgplusfval 17985 oppglsm 18264 opprval 18832 opprmulfval 18833 mattposvs 20479 mattpos1 20480 mamutpos 20482 mattposm 20483 madulid 20669 |
Copyright terms: Public domain | W3C validator |