![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposeq | Structured version Visualization version GIF version |
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposeq | ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3804 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
2 | tposss 7504 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) |
4 | eqimss2 3805 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐺 ⊆ 𝐹) | |
5 | tposss 7504 | . . 3 ⊢ (𝐺 ⊆ 𝐹 → tpos 𝐺 ⊆ tpos 𝐹) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹) |
7 | 3, 6 | eqssd 3767 | 1 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ⊆ wss 3721 tpos ctpos 7502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-mpt 4862 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-tpos 7503 |
This theorem is referenced by: tposeqd 7506 tposeqi 7536 |
Copyright terms: Public domain | W3C validator |