![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version |
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tpos0 | ⊢ tpos ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5382 | . . . 4 ⊢ Rel ∅ | |
2 | eqid 2770 | . . . . 5 ⊢ ∅ = ∅ | |
3 | fn0 6151 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
4 | 2, 3 | mpbir 221 | . . . 4 ⊢ ∅ Fn ∅ |
5 | tposfn2 7525 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
7 | cnv0 5676 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 7 | fneq2i 6126 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
9 | 6, 8 | mpbi 220 | . 2 ⊢ tpos ∅ Fn ∅ |
10 | fn0 6151 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
11 | 9, 10 | mpbi 220 | 1 ⊢ tpos ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∅c0 4061 ◡ccnv 5248 Rel wrel 5254 Fn wfn 6026 tpos ctpos 7502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 df-tpos 7503 |
This theorem is referenced by: oppchomfval 16580 oppgplusfval 17984 opprmulfval 18832 |
Copyright terms: Public domain | W3C validator |