![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpnzd | Structured version Visualization version GIF version |
Description: A triplet containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
Ref | Expression |
---|---|
tpnzd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
tpnzd | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnzd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | tpid3g 4441 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐵, 𝐶, 𝐴}) | |
3 | tprot 4420 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
4 | 2, 3 | syl6eleqr 2861 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) |
5 | ne0i 4069 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
6 | 1, 4, 5 | 3syl 18 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 {ctp 4320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-v 3353 df-dif 3726 df-un 3728 df-nul 4064 df-sn 4317 df-pr 4319 df-tp 4321 |
This theorem is referenced by: raltpd 4449 fr3nr 7126 limsupequzlem 40472 etransclem48 41016 |
Copyright terms: Public domain | W3C validator |