![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpnz | Structured version Visualization version GIF version |
Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tpnz | ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | tpid1 4448 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
3 | 2 | ne0ii 4067 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 ≠ wne 2933 Vcvv 3341 ∅c0 4059 {ctp 4326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-v 3343 df-dif 3719 df-un 3721 df-nul 4060 df-sn 4323 df-pr 4325 df-tp 4327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |