![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpnei | Structured version Visualization version GIF version |
Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 21143. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
tpnei | ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnei.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 20931 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | opnneiss 21143 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆)) | |
4 | 3 | 3exp 1112 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∈ 𝐽 → (𝑆 ⊆ 𝑋 → 𝑋 ∈ ((nei‘𝐽)‘𝑆)))) |
5 | 2, 4 | mpd 15 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
6 | ssnei 21135 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) | |
7 | 6 | ex 397 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑋)) |
8 | 5, 7 | impbid 202 | 1 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ∪ cuni 4574 ‘cfv 6031 Topctop 20918 neicnei 21122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-top 20919 df-nei 21123 |
This theorem is referenced by: neiuni 21147 neifil 21904 gneispa 38954 |
Copyright terms: Public domain | W3C validator |