![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpidm13 | Structured version Visualization version GIF version |
Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm13 | ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 4316 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴} | |
2 | tpidm12 4322 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} | |
3 | 1, 2 | eqtr3i 2675 | 1 ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 {cpr 4212 {ctp 4214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-sn 4211 df-pr 4213 df-tp 4215 |
This theorem is referenced by: fntpb 6514 hashtpg 13305 |
Copyright terms: Public domain | W3C validator |