Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm13 Structured version   Visualization version   GIF version

Theorem tpidm13 4323
 Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm13 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}

Proof of Theorem tpidm13
StepHypRef Expression
1 tprot 4316 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴}
2 tpidm12 4322 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
31, 2eqtr3i 2675 1 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523  {cpr 4212  {ctp 4214 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-sn 4211  df-pr 4213  df-tp 4215 This theorem is referenced by:  fntpb  6514  hashtpg  13305
 Copyright terms: Public domain W3C validator