Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3 Structured version   Visualization version   GIF version

Theorem tpid3 4438
 Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.)
Hypothesis
Ref Expression
tpid3.1 𝐶 ∈ V
Assertion
Ref Expression
tpid3 𝐶 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid3
StepHypRef Expression
1 tpid3.1 . 2 𝐶 ∈ V
2 tpid3g 4437 . 2 (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
31, 2ax-mp 5 1 𝐶 ∈ {𝐴, 𝐵, 𝐶}
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2127  Vcvv 3328  {ctp 4313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-v 3330  df-un 3708  df-sn 4310  df-pr 4312  df-tp 4314 This theorem is referenced by:  wrdl3s3  13877  umgrwwlks2on  27049  ex-pss  27567  sgnsf  30009  sgncl  30880  prodfzo03  30961  circlevma  31000  circlemethhgt  31001  hgt750lemg  31012  hgt750lemb  31014  hgt750lema  31015  hgt750leme  31016  tgoldbachgtde  31018  tgoldbachgt  31021  kur14lem7  31472  brtpid3  31882  rabren3dioph  37850  fourierdlem114  40909
 Copyright terms: Public domain W3C validator