![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | tpid3g 4437 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2127 Vcvv 3328 {ctp 4313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-v 3330 df-un 3708 df-sn 4310 df-pr 4312 df-tp 4314 |
This theorem is referenced by: wrdl3s3 13877 umgrwwlks2on 27049 ex-pss 27567 sgnsf 30009 sgncl 30880 prodfzo03 30961 circlevma 31000 circlemethhgt 31001 hgt750lemg 31012 hgt750lemb 31014 hgt750lema 31015 hgt750leme 31016 tgoldbachgtde 31018 tgoldbachgt 31021 kur14lem7 31472 brtpid3 31882 rabren3dioph 37850 fourierdlem114 40909 |
Copyright terms: Public domain | W3C validator |