Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq3d Structured version   Visualization version   GIF version

Theorem tpeq3d 4416
 Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tpeq3d (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})

Proof of Theorem tpeq3d
StepHypRef Expression
1 tpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 tpeq3 4413 . 2 (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
31, 2syl 17 1 (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630  {ctp 4318 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-v 3351  df-un 3726  df-sn 4315  df-tp 4319 This theorem is referenced by:  tpeq123d  4417  fntpb  6616  erngset  36602  erngset-rN  36610
 Copyright terms: Public domain W3C validator