![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
tpeq3 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4332 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | uneq2d 3911 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐶, 𝐷} ∪ {𝐴}) = ({𝐶, 𝐷} ∪ {𝐵})) |
3 | df-tp 4327 | . 2 ⊢ {𝐶, 𝐷, 𝐴} = ({𝐶, 𝐷} ∪ {𝐴}) | |
4 | df-tp 4327 | . 2 ⊢ {𝐶, 𝐷, 𝐵} = ({𝐶, 𝐷} ∪ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2820 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∪ cun 3714 {csn 4322 {cpr 4324 {ctp 4326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-un 3721 df-sn 4323 df-tp 4327 |
This theorem is referenced by: tpeq3d 4427 tppreq3 4439 fntpb 6639 fztpval 12616 hashtpg 13480 dvh4dimN 37257 |
Copyright terms: Public domain | W3C validator |