![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version |
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | istopon 20765 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 1, 2 | mpbiran2 974 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
4 | 3 | bicomi 214 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∪ cuni 4468 ‘cfv 5926 Topctop 20746 TopOnctopon 20763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-topon 20764 |
This theorem is referenced by: toptopon2 20771 eltpsi 20796 neiptopreu 20985 restuni 21014 stoig 21015 restlp 21035 restperf 21036 perfopn 21037 iscn2 21090 iscnp2 21091 lmcvg 21114 cnss1 21128 cnss2 21129 cncnpi 21130 cncnp2 21133 cnnei 21134 cnrest 21137 cnrest2 21138 cnrest2r 21139 cnpresti 21140 cnprest 21141 cnprest2 21142 paste 21146 lmss 21150 lmcnp 21156 lmcn 21157 t1t0 21200 haust1 21204 restcnrm 21214 resthauslem 21215 t1sep2 21221 sshauslem 21224 lmmo 21232 rncmp 21247 connima 21276 conncn 21277 1stcelcls 21312 kgeni 21388 kgenuni 21390 kgenftop 21391 kgenss 21394 kgenhaus 21395 kgencmp2 21397 kgenidm 21398 iskgen3 21400 1stckgen 21405 kgencn3 21409 kgen2cn 21410 txuni 21443 ptuniconst 21449 dfac14 21469 ptcnplem 21472 ptcnp 21473 txcnmpt 21475 txcn 21477 ptcn 21478 txindis 21485 txdis1cn 21486 ptrescn 21490 txcmpb 21495 lmcn2 21500 txkgen 21503 xkohaus 21504 xkoptsub 21505 xkopt 21506 cnmpt11 21514 cnmpt11f 21515 cnmpt1t 21516 cnmpt12 21518 cnmpt21 21522 cnmpt21f 21523 cnmpt2t 21524 cnmpt22 21525 cnmpt22f 21526 cnmptcom 21529 cnmptkp 21531 xkofvcn 21535 cnmpt2k 21539 txconn 21540 imasnopn 21541 imasncld 21542 imasncls 21543 qtopcmplem 21558 qtopkgen 21561 qtopss 21566 qtopeu 21567 qtopomap 21569 qtopcmap 21570 kqtop 21596 kqt0 21597 nrmr0reg 21600 regr1 21601 kqreg 21602 kqnrm 21603 hmeof1o 21615 hmeores 21622 hmeoqtop 21626 hmphref 21632 hmphindis 21648 cmphaushmeo 21651 txhmeo 21654 ptunhmeo 21659 xpstopnlem1 21660 ptcmpfi 21664 xkocnv 21665 xkohmeo 21666 kqhmph 21670 hausflim 21832 flimsncls 21837 flfneii 21843 hausflf 21848 cnpflfi 21850 flfcnp 21855 flfcnp2 21858 flimfnfcls 21879 cnpfcfi 21891 flfcntr 21894 cnextfun 21915 cnextfvval 21916 cnextf 21917 cnextcn 21918 cnextfres1 21919 cnextucn 22154 retopon 22614 cnmpt2pc 22774 evth 22805 evth2 22806 htpyco1 22824 htpyco2 22825 phtpyco2 22836 pcopt 22868 pcopt2 22869 pcorevlem 22872 pi1cof 22905 pi1coghm 22907 qtophaus 30031 rrhre 30193 pconnconn 31339 connpconn 31343 pconnpi1 31345 sconnpi1 31347 txsconnlem 31348 txsconn 31349 cvxsconn 31351 cvmsf1o 31380 cvmliftmolem1 31389 cvmliftlem8 31400 cvmlift2lem9a 31411 cvmlift2lem9 31419 cvmlift2lem11 31421 cvmlift2lem12 31422 cvmliftphtlem 31425 cvmlift3lem6 31432 cvmlift3lem8 31434 cvmlift3lem9 31435 cnres2 33692 cnresima 33693 hausgraph 38107 ntrf2 38739 fcnre 39498 |
Copyright terms: Public domain | W3C validator |