![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid 3773 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn 20922 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
4 | 2, 3 | mpan2 671 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 1, 4 | syl5eqel 2854 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ∪ cuni 4574 Topctop 20918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-v 3353 df-in 3730 df-ss 3737 df-pw 4299 df-uni 4575 df-top 20919 |
This theorem is referenced by: riinopn 20933 toponmax 20951 cldval 21048 ntrfval 21049 clsfval 21050 iscld 21052 ntrval 21061 clsval 21062 0cld 21063 clsval2 21075 ntrtop 21095 toponmre 21118 neifval 21124 neif 21125 neival 21127 isnei 21128 tpnei 21146 lpfval 21163 lpval 21164 restcld 21197 restcls 21206 restntr 21207 cnrest 21310 cmpsub 21424 hauscmplem 21430 cmpfi 21432 isconn2 21438 connsubclo 21448 1stcfb 21469 1stcelcls 21485 islly2 21508 lly1stc 21520 islocfin 21541 finlocfin 21544 cmpkgen 21575 llycmpkgen 21576 ptbasid 21599 ptpjpre2 21604 ptopn2 21608 xkoopn 21613 xkouni 21623 txcld 21627 txcn 21650 ptrescn 21663 txtube 21664 txhaus 21671 xkoptsub 21678 xkopt 21679 xkopjcn 21680 qtoptop 21724 qtopuni 21726 opnfbas 21866 flimval 21987 flimfil 21993 hausflim 22005 hauspwpwf1 22011 hauspwpwdom 22012 flimfnfcls 22052 cnpfcfi 22064 bcthlem5 23344 dvply1 24259 cldssbrsiga 30590 dya2iocucvr 30686 kur14lem7 31532 kur14lem9 31534 connpconn 31555 cvmliftmolem1 31601 ordtop 32772 ntrelmap 38949 clselmap 38951 dssmapntrcls 38952 dssmapclsntr 38953 reopn 40019 |
Copyright terms: Public domain | W3C validator |