![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponsspwpw | Structured version Visualization version GIF version |
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
toponsspwpw | ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab 3830 | . . . . . . 7 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
2 | eqcom 2765 | . . . . . . . 8 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
3 | 2 | abbii 2875 | . . . . . . 7 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
4 | 1, 3 | sseqtri 3776 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
5 | pwpwssunieq 4765 | . . . . . 6 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
6 | 4, 5 | sstri 3751 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
7 | pwexg 4997 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
8 | pwexg 4997 | . . . . . 6 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V) |
10 | ssexg 4954 | . . . . 5 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
11 | 6, 9, 10 | sylancr 698 | . . . 4 ⊢ (𝐴 ∈ V → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
12 | eqeq1 2762 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
13 | 12 | rabbidv 3327 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
14 | df-topon 20916 | . . . . 5 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
15 | 13, 14 | fvmptg 6440 | . . . 4 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
16 | 11, 15 | mpdan 705 | . . 3 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
17 | 16, 6 | syl6eqss 3794 | . 2 ⊢ (𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
18 | fvprc 6344 | . . 3 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) = ∅) | |
19 | 0ss 4113 | . . 3 ⊢ ∅ ⊆ 𝒫 𝒫 𝐴 | |
20 | 18, 19 | syl6eqss 3794 | . 2 ⊢ (¬ 𝐴 ∈ V → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
21 | 17, 20 | pm2.61i 176 | 1 ⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1630 ∈ wcel 2137 {cab 2744 {crab 3052 Vcvv 3338 ⊆ wss 3713 ∅c0 4056 𝒫 cpw 4300 ∪ cuni 4586 ‘cfv 6047 Topctop 20898 TopOnctopon 20915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-iota 6010 df-fun 6049 df-fv 6055 df-topon 20916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |