![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 20913 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
2 | topontop 20912 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | eqid 2752 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn 20905 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
6 | 1, 5 | eqeltrd 2831 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ∪ cuni 4580 ‘cfv 6041 Topctop 20892 TopOnctopon 20909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fv 6049 df-top 20893 df-topon 20910 |
This theorem is referenced by: topgele 20928 eltpsg 20941 en2top 20983 resttopon 21159 ordtrest 21200 ordtrest2lem 21201 ordtrest2 21202 lmfval 21230 cnpfval 21232 iscn 21233 iscnp 21235 lmbrf 21258 cncls 21272 cnconst2 21281 cnrest2 21284 cndis 21289 cnindis 21290 cnpdis 21291 lmfss 21294 lmres 21298 lmff 21299 ist1-3 21347 connsuba 21417 unconn 21426 kgenval 21532 elkgen 21533 kgentopon 21535 pttoponconst 21594 tx1cn 21606 tx2cn 21607 ptcls 21613 xkoccn 21616 txlm 21645 cnmpt2res 21674 xkoinjcn 21684 qtoprest 21714 ordthmeolem 21798 pt1hmeo 21803 xkocnv 21811 flimclslem 21981 flfval 21987 flfnei 21988 isflf 21990 flfcnp 22001 txflf 22003 supnfcls 22017 fclscf 22022 fclscmp 22027 fcfval 22030 isfcf 22031 uffcfflf 22036 cnpfcf 22038 mopnm 22442 isxms2 22446 prdsxmslem2 22527 bcth2 23319 dvmptid 23911 dvmptc 23912 dvtaylp 24315 taylthlem1 24318 taylthlem2 24319 pige3 24460 dvcxp1 24672 cxpcn3 24680 ordtrestNEW 30268 ordtrest2NEWlem 30269 ordtrest2NEW 30270 topjoin 32658 areacirclem1 33805 |
Copyright terms: Public domain | W3C validator |