![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinfindis | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
Ref | Expression |
---|---|
topdifinfindis | ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑥 𝐴 ∈ Fin | |
2 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
3 | nfrab1 3152 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
4 | 2, 3 | nfcxfr 2791 | . 2 ⊢ Ⅎ𝑥𝑇 |
5 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥{∅, 𝐴} | |
6 | 0elpw 4864 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐴 | |
7 | eleq1a 2725 | . . . . . 6 ⊢ (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) |
9 | pwidg 4206 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) | |
10 | eleq1a 2725 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
12 | 8, 11 | jaod 394 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)) |
13 | 12 | pm4.71rd 668 | . . 3 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
14 | vex 3234 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 14 | elpr 4231 | . . . 4 ⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
17 | diffi 8233 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑥) ∈ Fin) | |
18 | biortn 420 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
20 | 19 | anbi2d 740 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))) |
21 | 2 | rabeq2i 3228 | . . . 4 ⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
22 | 20, 21 | syl6rbbr 279 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
23 | 13, 16, 22 | 3bitr4rd 301 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ {∅, 𝐴})) |
24 | 1, 4, 5, 23 | eqrd 3655 | 1 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ∖ cdif 3604 ∅c0 3948 𝒫 cpw 4191 {cpr 4212 Fincfn 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-om 7108 df-er 7787 df-en 7998 df-fin 8001 |
This theorem is referenced by: topdifinf 33327 |
Copyright terms: Public domain | W3C validator |