Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp2 Structured version   Visualization version   GIF version

Theorem tngngp2 22628
 Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp2.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp2.x 𝑋 = (Base‘𝐺)
tngngp2.d 𝐷 = (dist‘𝑇)
Assertion
Ref Expression
tngngp2 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))))

Proof of Theorem tngngp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 22575 . . . . 5 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
2 tngngp2.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 fvex 6350 . . . . . . . 8 (Base‘𝐺) ∈ V
42, 3eqeltri 2823 . . . . . . 7 𝑋 ∈ V
5 reex 10190 . . . . . . 7 ℝ ∈ V
6 fex2 7274 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
74, 5, 6mp3an23 1553 . . . . . 6 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
82a1i 11 . . . . . . 7 (𝑁 ∈ V → 𝑋 = (Base‘𝐺))
9 tngngp2.t . . . . . . . 8 𝑇 = (𝐺 toNrmGrp 𝑁)
109, 2tngbas 22617 . . . . . . 7 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
11 eqid 2748 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
129, 11tngplusg 22618 . . . . . . . 8 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
1312oveqdr 6825 . . . . . . 7 ((𝑁 ∈ V ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝑇)𝑦))
148, 10, 13grppropd 17609 . . . . . 6 (𝑁 ∈ V → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp))
157, 14syl 17 . . . . 5 (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp))
161, 15syl5ibr 236 . . . 4 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → 𝐺 ∈ Grp))
1716imp 444 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
18 ngpms 22576 . . . . . 6 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
1918adantl 473 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ MetSp)
20 eqid 2748 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
21 tngngp2.d . . . . . 6 𝐷 = (dist‘𝑇)
2220, 21msmet2 22437 . . . . 5 (𝑇 ∈ MetSp → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
2319, 22syl 17 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
24 eqid 2748 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
252, 24grpsubf 17666 . . . . . . . . 9 (𝐺 ∈ Grp → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
2617, 25syl 17 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (-g𝐺):(𝑋 × 𝑋)⟶𝑋)
27 fco 6207 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (-g𝐺):(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ)
2826, 27syldan 488 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ)
297adantr 472 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑁 ∈ V)
309, 24tngds 22624 . . . . . . . . . 10 (𝑁 ∈ V → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3129, 30syl 17 . . . . . . . . 9 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
3231, 21syl6reqr 2801 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝑁 ∘ (-g𝐺)))
3332feq1d 6179 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑁 ∘ (-g𝐺)):(𝑋 × 𝑋)⟶ℝ))
3428, 33mpbird 247 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
35 ffn 6194 . . . . . 6 (𝐷:(𝑋 × 𝑋)⟶ℝ → 𝐷 Fn (𝑋 × 𝑋))
36 fnresdm 6149 . . . . . 6 (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
3734, 35, 363syl 18 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
3829, 10syl 17 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑋 = (Base‘𝑇))
3938sqxpeqd 5286 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑋 × 𝑋) = ((Base‘𝑇) × (Base‘𝑇)))
4039reseq2d 5539 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))
4137, 40eqtr3d 2784 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))
4238fveq2d 6344 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (Met‘𝑋) = (Met‘(Base‘𝑇)))
4323, 41, 423eltr4d 2842 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 ∈ (Met‘𝑋))
4417, 43jca 555 . 2 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))
4515biimpa 502 . . . 4 ((𝑁:𝑋⟶ℝ ∧ 𝐺 ∈ Grp) → 𝑇 ∈ Grp)
4645adantrr 755 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ Grp)
47 simprr 813 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘𝑋))
487adantr 472 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 ∈ V)
4948, 10syl 17 . . . . . . . . 9 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑋 = (Base‘𝑇))
5049fveq2d 6344 . . . . . . . 8 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (Met‘𝑋) = (Met‘(Base‘𝑇)))
5147, 50eleqtrd 2829 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘(Base‘𝑇)))
52 metf 22307 . . . . . . 7 (𝐷 ∈ (Met‘(Base‘𝑇)) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ)
5351, 52syl 17 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ)
54 ffn 6194 . . . . . 6 (𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ → 𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)))
55 fnresdm 6149 . . . . . 6 (𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷)
5653, 54, 553syl 18 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷)
5756, 51eqeltrd 2827 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)))
5856fveq2d 6344 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘𝐷))
59 simprl 811 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐺 ∈ Grp)
60 eqid 2748 . . . . . . 7 (MetOpen‘𝐷) = (MetOpen‘𝐷)
619, 21, 60tngtopn 22626 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑁 ∈ V) → (MetOpen‘𝐷) = (TopOpen‘𝑇))
6259, 48, 61syl2anc 696 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘𝐷) = (TopOpen‘𝑇))
6358, 62eqtr2d 2783 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))))
64 eqid 2748 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
6521reseq1i 5535 . . . . 5 (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
6664, 20, 65isms2 22427 . . . 4 (𝑇 ∈ MetSp ↔ ((𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇)) ∧ (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))))
6757, 63, 66sylanbrc 701 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ MetSp)
68 simpl 474 . . . . . . 7 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁:𝑋⟶ℝ)
699, 2, 5tngnm 22627 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
7059, 68, 69syl2anc 696 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 = (norm‘𝑇))
718, 10eqtr3d 2784 . . . . . . . 8 (𝑁 ∈ V → (Base‘𝐺) = (Base‘𝑇))
7271, 12grpsubpropd 17692 . . . . . . 7 (𝑁 ∈ V → (-g𝐺) = (-g𝑇))
7348, 72syl 17 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (-g𝐺) = (-g𝑇))
7470, 73coeq12d 5430 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g𝐺)) = ((norm‘𝑇) ∘ (-g𝑇)))
7548, 30syl 17 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
7674, 75eqtr3d 2784 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g𝑇)) = (dist‘𝑇))
77 eqimss 3786 . . . 4 (((norm‘𝑇) ∘ (-g𝑇)) = (dist‘𝑇) → ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇))
7876, 77syl 17 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇))
79 eqid 2748 . . . 4 (norm‘𝑇) = (norm‘𝑇)
80 eqid 2748 . . . 4 (-g𝑇) = (-g𝑇)
81 eqid 2748 . . . 4 (dist‘𝑇) = (dist‘𝑇)
8279, 80, 81isngp 22572 . . 3 (𝑇 ∈ NrmGrp ↔ (𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧ ((norm‘𝑇) ∘ (-g𝑇)) ⊆ (dist‘𝑇)))
8346, 67, 78, 82syl3anbrc 1407 . 2 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ NrmGrp)
8444, 83impbida 913 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1620   ∈ wcel 2127  Vcvv 3328   ⊆ wss 3703   × cxp 5252   ↾ cres 5256   ∘ ccom 5258   Fn wfn 6032  ⟶wf 6033  ‘cfv 6037  (class class class)co 6801  ℝcr 10098  Basecbs 16030  +gcplusg 16114  distcds 16123  TopOpenctopn 16255  Grpcgrp 17594  -gcsg 17596  Metcme 19905  MetOpencmopn 19909  MetSpcmt 22295  normcnm 22553  NrmGrpcngp 22554   toNrmGrp ctng 22555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-inf 8502  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-plusg 16127  df-tset 16133  df-ds 16137  df-rest 16256  df-topn 16257  df-0g 16275  df-topgen 16277  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-xms 22297  df-ms 22298  df-nm 22559  df-ngp 22560  df-tng 22561 This theorem is referenced by:  tngngpd  22629  tngngp  22630  nrmtngnrm  22634  tngngpim  22635  tngnrg  22650
 Copyright terms: Public domain W3C validator