MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxps Structured version   Visualization version   GIF version

Theorem tmsxps 22563
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
tmsxps (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))

Proof of Theorem tmsxps
StepHypRef Expression
1 eqid 2761 . . . . 5 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
2 eqid 2761 . . . . 5 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
3 eqid 2761 . . . . 5 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
4 tmsxps.1 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
5 eqid 2761 . . . . . . 7 (toMetSp‘𝑀) = (toMetSp‘𝑀)
65tmsxms 22513 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
74, 6syl 17 . . . . 5 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
8 tmsxps.2 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
9 eqid 2761 . . . . . . 7 (toMetSp‘𝑁) = (toMetSp‘𝑁)
109tmsxms 22513 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
118, 10syl 17 . . . . 5 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
12 tmsxps.p . . . . 5 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
131, 2, 3, 7, 11, 12xpsdsfn2 22405 . . . 4 (𝜑𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
14 fnresdm 6162 . . . 4 (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
1513, 14syl 17 . . 3 (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
161xpsxms 22561 . . . . 5 (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
177, 11, 16syl2anc 696 . . . 4 (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
18 eqid 2761 . . . . 5 (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
1918, 12xmsxmet2 22486 . . . 4 (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
2017, 19syl 17 . . 3 (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
2115, 20eqeltrrd 2841 . 2 (𝜑𝑃 ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
225tmsbas 22510 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀)))
234, 22syl 17 . . . . 5 (𝜑𝑋 = (Base‘(toMetSp‘𝑀)))
249tmsbas 22510 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁)))
258, 24syl 17 . . . . 5 (𝜑𝑌 = (Base‘(toMetSp‘𝑁)))
2623, 25xpeq12d 5298 . . . 4 (𝜑 → (𝑋 × 𝑌) = ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑁))))
271, 2, 3, 7, 11xpsbas 16457 . . . 4 (𝜑 → ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
2826, 27eqtrd 2795 . . 3 (𝜑 → (𝑋 × 𝑌) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
2928fveq2d 6358 . 2 (𝜑 → (∞Met‘(𝑋 × 𝑌)) = (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
3021, 29eleqtrrd 2843 1 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140   × cxp 5265  cres 5269   Fn wfn 6045  cfv 6050  (class class class)co 6815  Basecbs 16080  distcds 16173   ×s cxps 16389  ∞Metcxmt 19954  ∞MetSpcxme 22344  toMetSpctmt 22346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-icc 12396  df-fz 12541  df-fzo 12681  df-seq 13017  df-hash 13333  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-bl 19964  df-mopn 19965  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-xms 22347  df-tms 22349
This theorem is referenced by:  txmetcnp  22574
  Copyright terms: Public domain W3C validator