MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum2 Structured version   Visualization version   GIF version

Theorem tmdgsum2 22099
Description: For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tmdgsum.j 𝐽 = (TopOpen‘𝐺)
tmdgsum.b 𝐵 = (Base‘𝐺)
tmdgsum2.t · = (.g𝐺)
tmdgsum2.1 (𝜑𝐺 ∈ CMnd)
tmdgsum2.2 (𝜑𝐺 ∈ TopMnd)
tmdgsum2.a (𝜑𝐴 ∈ Fin)
tmdgsum2.u (𝜑𝑈𝐽)
tmdgsum2.x (𝜑𝑋𝐵)
tmdgsum2.3 (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈)
Assertion
Ref Expression
tmdgsum2 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Distinct variable groups:   𝑢,𝑓,𝐴   𝑓,𝐽,𝑢   𝑓,𝑋,𝑢   𝐵,𝑓,𝑢   𝑓,𝐺,𝑢   𝑈,𝑓,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑓)   · (𝑢,𝑓)

Proof of Theorem tmdgsum2
Dummy variables 𝑔 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . . . 7 (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓))
21mptpreima 5787 . . . . . 6 ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}
3 tmdgsum2.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
4 tmdgsum2.2 . . . . . . . 8 (𝜑𝐺 ∈ TopMnd)
5 tmdgsum2.a . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 tmdgsum.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
7 tmdgsum.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
86, 7tmdgsum 22098 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
93, 4, 5, 8syl3anc 1477 . . . . . . 7 (𝜑 → (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
10 tmdgsum2.u . . . . . . 7 (𝜑𝑈𝐽)
11 cnima 21269 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽) ∧ 𝑈𝐽) → ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ^ko 𝒫 𝐴))
129, 10, 11syl2anc 696 . . . . . 6 (𝜑 → ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ^ko 𝒫 𝐴))
132, 12syl5eqelr 2842 . . . . 5 (𝜑 → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (𝐽 ^ko 𝒫 𝐴))
146, 7tmdtopon 22084 . . . . . . . 8 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
15 topontop 20918 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
164, 14, 153syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
17 xkopt 21658 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
1816, 5, 17syl2anc 696 . . . . . 6 (𝜑 → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
19 fnconstg 6252 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → (𝐴 × {𝐽}) Fn 𝐴)
204, 14, 193syl 18 . . . . . . 7 (𝜑 → (𝐴 × {𝐽}) Fn 𝐴)
21 eqid 2758 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2221ptval 21573 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴 × {𝐽}) Fn 𝐴) → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
235, 20, 22syl2anc 696 . . . . . 6 (𝜑 → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2418, 23eqtrd 2792 . . . . 5 (𝜑 → (𝐽 ^ko 𝒫 𝐴) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2513, 24eleqtrd 2839 . . . 4 (𝜑 → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
26 tmdgsum2.x . . . . . . 7 (𝜑𝑋𝐵)
27 fconst6g 6253 . . . . . . 7 (𝑋𝐵 → (𝐴 × {𝑋}):𝐴𝐵)
2826, 27syl 17 . . . . . 6 (𝜑 → (𝐴 × {𝑋}):𝐴𝐵)
29 fvex 6360 . . . . . . . 8 (Base‘𝐺) ∈ V
307, 29eqeltri 2833 . . . . . . 7 𝐵 ∈ V
31 elmapg 8034 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3230, 5, 31sylancr 698 . . . . . 6 (𝜑 → ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3328, 32mpbird 247 . . . . 5 (𝜑 → (𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴))
34 fconstmpt 5318 . . . . . . . 8 (𝐴 × {𝑋}) = (𝑘𝐴𝑋)
3534oveq2i 6822 . . . . . . 7 (𝐺 Σg (𝐴 × {𝑋})) = (𝐺 Σg (𝑘𝐴𝑋))
36 cmnmnd 18406 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
373, 36syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
38 tmdgsum2.t . . . . . . . . 9 · = (.g𝐺)
397, 38gsumconst 18532 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
4037, 5, 26, 39syl3anc 1477 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
4135, 40syl5eq 2804 . . . . . 6 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) = ((♯‘𝐴) · 𝑋))
42 tmdgsum2.3 . . . . . 6 (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈)
4341, 42eqeltrd 2837 . . . . 5 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈)
44 oveq2 6819 . . . . . . 7 (𝑓 = (𝐴 × {𝑋}) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐴 × {𝑋})))
4544eleq1d 2822 . . . . . 6 (𝑓 = (𝐴 × {𝑋}) → ((𝐺 Σg 𝑓) ∈ 𝑈 ↔ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
4645elrab 3502 . . . . 5 ((𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ∧ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
4733, 43, 46sylanbrc 701 . . . 4 (𝜑 → (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})
48 tg2 20969 . . . 4 (({𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) ∧ (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
4925, 47, 48syl2anc 696 . . 3 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
50 eleq2 2826 . . . . 5 (𝑡 = 𝑥 → ((𝐴 × {𝑋}) ∈ 𝑡 ↔ (𝐴 × {𝑋}) ∈ 𝑥))
51 sseq1 3765 . . . . 5 (𝑡 = 𝑥 → (𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ 𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
5250, 51anbi12d 749 . . . 4 (𝑡 = 𝑥 → (((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5352rexab2 3512 . . 3 (∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5449, 53sylib 208 . 2 (𝜑 → ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
55 toponuni 20919 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
564, 14, 553syl 18 . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐽)
5756ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐵 = 𝐽)
5857ineq1d 3954 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) = ( 𝐽 ran 𝑔))
5916ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐽 ∈ Top)
60 simplrl 819 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔 Fn 𝐴)
61 simplrr 820 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))
62 fvconst2g 6629 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝐽})‘𝑦) = 𝐽)
6362eleq2d 2823 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ (𝑔𝑦) ∈ 𝐽))
6463ralbidva 3121 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6559, 64syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6661, 65mpbid 222 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽)
67 ffnfv 6549 . . . . . . . . . . . . . 14 (𝑔:𝐴𝐽 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6860, 66, 67sylanbrc 701 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴𝐽)
69 frn 6212 . . . . . . . . . . . . 13 (𝑔:𝐴𝐽 → ran 𝑔𝐽)
7068, 69syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔𝐽)
715ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐴 ∈ Fin)
72 dffn4 6280 . . . . . . . . . . . . . 14 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
7360, 72sylib 208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴onto→ran 𝑔)
74 fofi 8415 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
7571, 73, 74syl2anc 696 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ∈ Fin)
76 eqid 2758 . . . . . . . . . . . . 13 𝐽 = 𝐽
7776rintopn 20914 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ran 𝑔𝐽 ∧ ran 𝑔 ∈ Fin) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7859, 70, 75, 77syl3anc 1477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7958, 78eqeltrd 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) ∈ 𝐽)
8026ad2antrr 764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋𝐵)
81 fconstmpt 5318 . . . . . . . . . . . . . 14 (𝐴 × {𝑋}) = (𝑦𝐴𝑋)
82 simprl 811 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦))
8381, 82syl5eqelr 2842 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦))
84 mptelixpg 8109 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8571, 84syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8683, 85mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦))
87 eleq2 2826 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑦) → (𝑋𝑧𝑋 ∈ (𝑔𝑦)))
8887ralrn 6523 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8960, 88syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
9086, 89mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑧 ∈ ran 𝑔 𝑋𝑧)
91 elrint 4668 . . . . . . . . . . 11 (𝑋 ∈ (𝐵 ran 𝑔) ↔ (𝑋𝐵 ∧ ∀𝑧 ∈ ran 𝑔 𝑋𝑧))
9280, 90, 91sylanbrc 701 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ (𝐵 ran 𝑔))
9330inex1 4949 . . . . . . . . . . . . 13 (𝐵 ran 𝑔) ∈ V
94 ixpconstg 8081 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝐵 ran 𝑔) ∈ V) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
9571, 93, 94sylancl 697 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
96 inss2 3975 . . . . . . . . . . . . . . 15 (𝐵 ran 𝑔) ⊆ ran 𝑔
97 fnfvelrn 6517 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐴𝑦𝐴) → (𝑔𝑦) ∈ ran 𝑔)
98 intss1 4642 . . . . . . . . . . . . . . . 16 ((𝑔𝑦) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑦))
9997, 98syl 17 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝐴𝑦𝐴) → ran 𝑔 ⊆ (𝑔𝑦))
10096, 99syl5ss 3753 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝐴𝑦𝐴) → (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
101100ralrimiva 3102 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → ∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
102 ss2ixp 8085 . . . . . . . . . . . . 13 (∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10360, 101, 1023syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10495, 103eqsstr3d 3779 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝐵 ran 𝑔) ↑𝑚 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦))
105 ssrab 3819 . . . . . . . . . . . . 13 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ (X𝑦𝐴 (𝑔𝑦) ⊆ (𝐵𝑚 𝐴) ∧ ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈))
106105simprbi 483 . . . . . . . . . . . 12 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
107106ad2antll 767 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
108 ssralv 3805 . . . . . . . . . . 11 (((𝐵 ran 𝑔) ↑𝑚 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦) → (∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈 → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
109104, 107, 108sylc 65 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)
110 eleq2 2826 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (𝑋𝑢𝑋 ∈ (𝐵 ran 𝑔)))
111 oveq1 6818 . . . . . . . . . . . . 13 (𝑢 = (𝐵 ran 𝑔) → (𝑢𝑚 𝐴) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
112111raleqdv 3281 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈 ↔ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
113110, 112anbi12d 749 . . . . . . . . . . 11 (𝑢 = (𝐵 ran 𝑔) → ((𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) ↔ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
114113rspcev 3447 . . . . . . . . . 10 (((𝐵 ran 𝑔) ∈ 𝐽 ∧ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
11579, 92, 109, 114syl12anc 1475 . . . . . . . . 9 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
116115ex 449 . . . . . . . 8 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
1171163adantr3 1177 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
118 eleq2 2826 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((𝐴 × {𝑋}) ∈ 𝑥 ↔ (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦)))
119 sseq1 3765 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
120118, 119anbi12d 749 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
121120imbi1d 330 . . . . . . 7 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) ↔ (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
122117, 121syl5ibrcom 237 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
123122expimpd 630 . . . . 5 (𝜑 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
124123exlimdv 2008 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
125124impd 446 . . 3 (𝜑 → ((∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
126125exlimdv 2008 . 2 (𝜑 → (∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
12754, 126mpd 15 1 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wex 1851  wcel 2137  {cab 2744  wral 3048  wrex 3049  {crab 3052  Vcvv 3338  cdif 3710  cin 3712  wss 3713  𝒫 cpw 4300  {csn 4319   cuni 4586   cint 4625  cmpt 4879   × cxp 5262  ccnv 5263  ran crn 5265  cima 5267   Fn wfn 6042  wf 6043  ontowfo 6045  cfv 6047  (class class class)co 6811  𝑚 cmap 8021  Xcixp 8072  Fincfn 8119  chash 13309  Basecbs 16057  TopOpenctopn 16282  topGenctg 16298  tcpt 16299   Σg cgsu 16301  Mndcmnd 17493  .gcmg 17739  CMndccmn 18391  Topctop 20898  TopOnctopon 20915   Cn ccn 21228   ^ko cxko 21564  TopMndctmd 22073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-om 7229  df-1st 7331  df-2nd 7332  df-supp 7462  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-er 7909  df-map 8023  df-ixp 8073  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fsupp 8439  df-fi 8480  df-oi 8578  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-fzo 12658  df-seq 12994  df-hash 13310  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-rest 16283  df-0g 16302  df-gsum 16303  df-topgen 16304  df-pt 16305  df-mre 16446  df-mrc 16447  df-acs 16449  df-plusf 17440  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-submnd 17535  df-mulg 17740  df-cntz 17948  df-cmn 18393  df-top 20899  df-topon 20916  df-topsp 20937  df-bases 20950  df-cn 21231  df-cnp 21232  df-cmp 21390  df-tx 21565  df-xko 21566  df-tmd 22075
This theorem is referenced by:  tsmsxp  22157
  Copyright terms: Public domain W3C validator