![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > thlbas | Structured version Visualization version GIF version |
Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) |
Ref | Expression |
---|---|
thlval.k | ⊢ 𝐾 = (toHL‘𝑊) |
thlbas.c | ⊢ 𝐶 = (CSubSp‘𝑊) |
Ref | Expression |
---|---|
thlbas | ⊢ 𝐶 = (Base‘𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thlval.k | . . . . 5 ⊢ 𝐾 = (toHL‘𝑊) | |
2 | thlbas.c | . . . . 5 ⊢ 𝐶 = (CSubSp‘𝑊) | |
3 | eqid 2760 | . . . . 5 ⊢ (toInc‘𝐶) = (toInc‘𝐶) | |
4 | eqid 2760 | . . . . 5 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
5 | 1, 2, 3, 4 | thlval 20241 | . . . 4 ⊢ (𝑊 ∈ V → 𝐾 = ((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
6 | 5 | fveq2d 6356 | . . 3 ⊢ (𝑊 ∈ V → (Base‘𝐾) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉))) |
7 | fvex 6362 | . . . . . 6 ⊢ (CSubSp‘𝑊) ∈ V | |
8 | 2, 7 | eqeltri 2835 | . . . . 5 ⊢ 𝐶 ∈ V |
9 | 3 | ipobas 17356 | . . . . 5 ⊢ (𝐶 ∈ V → 𝐶 = (Base‘(toInc‘𝐶))) |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝐶 = (Base‘(toInc‘𝐶)) |
11 | baseid 16121 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
12 | 1re 10231 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
13 | 1nn 11223 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
14 | 1nn0 11500 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
15 | 1lt10 11873 | . . . . . . . 8 ⊢ 1 < ;10 | |
16 | 13, 14, 14, 15 | declti 11738 | . . . . . . 7 ⊢ 1 < ;11 |
17 | 12, 16 | ltneii 10342 | . . . . . 6 ⊢ 1 ≠ ;11 |
18 | basendx 16125 | . . . . . . 7 ⊢ (Base‘ndx) = 1 | |
19 | ocndx 16262 | . . . . . . 7 ⊢ (oc‘ndx) = ;11 | |
20 | 18, 19 | neeq12i 2998 | . . . . . 6 ⊢ ((Base‘ndx) ≠ (oc‘ndx) ↔ 1 ≠ ;11) |
21 | 17, 20 | mpbir 221 | . . . . 5 ⊢ (Base‘ndx) ≠ (oc‘ndx) |
22 | 11, 21 | setsnid 16117 | . . . 4 ⊢ (Base‘(toInc‘𝐶)) = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
23 | 10, 22 | eqtri 2782 | . . 3 ⊢ 𝐶 = (Base‘((toInc‘𝐶) sSet 〈(oc‘ndx), (ocv‘𝑊)〉)) |
24 | 6, 23 | syl6reqr 2813 | . 2 ⊢ (𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
25 | base0 16114 | . . 3 ⊢ ∅ = (Base‘∅) | |
26 | fvprc 6346 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (CSubSp‘𝑊) = ∅) | |
27 | 2, 26 | syl5eq 2806 | . . 3 ⊢ (¬ 𝑊 ∈ V → 𝐶 = ∅) |
28 | fvprc 6346 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (toHL‘𝑊) = ∅) | |
29 | 1, 28 | syl5eq 2806 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
30 | 29 | fveq2d 6356 | . . 3 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐾) = (Base‘∅)) |
31 | 25, 27, 30 | 3eqtr4a 2820 | . 2 ⊢ (¬ 𝑊 ∈ V → 𝐶 = (Base‘𝐾)) |
32 | 24, 31 | pm2.61i 176 | 1 ⊢ 𝐶 = (Base‘𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∅c0 4058 〈cop 4327 ‘cfv 6049 (class class class)co 6813 1c1 10129 ;cdc 11685 ndxcnx 16056 sSet csts 16057 Basecbs 16059 occoc 16151 toInccipo 17352 ocvcocv 20206 CSubSpccss 20207 toHLcthl 20208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-tset 16162 df-ple 16163 df-ocomp 16165 df-ipo 17353 df-thl 20211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |