MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval Structured version   Visualization version   GIF version

Theorem tgval 20981
Description: The topology generated by a basis. See also tgval2 20982 and tgval3 20989. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉

Proof of Theorem tgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐵𝑉𝐵 ∈ V)
2 uniexg 7121 . . 3 (𝐵𝑉 𝐵 ∈ V)
3 abssexg 5000 . . 3 ( 𝐵 ∈ V → {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V)
4 uniin 4609 . . . . . . 7 (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)
5 sstr 3752 . . . . . . 7 ((𝑥 (𝐵 ∩ 𝒫 𝑥) ∧ (𝐵 ∩ 𝒫 𝑥) ⊆ ( 𝐵 𝒫 𝑥)) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
64, 5mpan2 709 . . . . . 6 (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
7 ssin 3978 . . . . . 6 ((𝑥 𝐵𝑥 𝒫 𝑥) ↔ 𝑥 ⊆ ( 𝐵 𝒫 𝑥))
86, 7sylibr 224 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → (𝑥 𝐵𝑥 𝒫 𝑥))
98ss2abi 3815 . . . 4 {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)}
10 ssexg 4956 . . . 4 (({𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ⊆ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∧ {𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V) → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
119, 10mpan 708 . . 3 ({𝑥 ∣ (𝑥 𝐵𝑥 𝒫 𝑥)} ∈ V → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
122, 3, 113syl 18 . 2 (𝐵𝑉 → {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V)
13 ineq1 3950 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
1413unieqd 4598 . . . . 5 (𝑦 = 𝐵 (𝑦 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
1514sseq2d 3774 . . . 4 (𝑦 = 𝐵 → (𝑥 (𝑦 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1615abbidv 2879 . . 3 (𝑦 = 𝐵 → {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
17 df-topgen 16326 . . 3 topGen = (𝑦 ∈ V ↦ {𝑥𝑥 (𝑦 ∩ 𝒫 𝑥)})
1816, 17fvmptg 6443 . 2 ((𝐵 ∈ V ∧ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ∈ V) → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
191, 12, 18syl2anc 696 1 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {cab 2746  Vcvv 3340  cin 3714  wss 3715  𝒫 cpw 4302   cuni 4588  cfv 6049  topGenctg 16320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16326
This theorem is referenced by:  tgval2  20982  eltg  20983  tgdif0  21018
  Copyright terms: Public domain W3C validator