![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgss3 | Structured version Visualization version GIF version |
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgss3 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bastg 20818 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐵 ⊆ (topGen‘𝐵)) |
3 | sstr2 3643 | . . 3 ⊢ (𝐵 ⊆ (topGen‘𝐵) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶))) |
5 | fvex 6239 | . . . 4 ⊢ (topGen‘𝐶) ∈ V | |
6 | tgss 20820 | . . . 4 ⊢ (((topGen‘𝐶) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐶)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶))) | |
7 | 5, 6 | mpan 706 | . . 3 ⊢ (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶))) |
8 | tgidm 20832 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶)) | |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶)) |
10 | 9 | sseq2d 3666 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)) ↔ (topGen‘𝐵) ⊆ (topGen‘𝐶))) |
11 | 7, 10 | syl5ib 234 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))) |
12 | 4, 11 | impbid 202 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ‘cfv 5926 topGenctg 16145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-topgen 16151 |
This theorem is referenced by: tgss2 20839 2basgen 20842 isfne4b 32461 |
Copyright terms: Public domain | W3C validator |