MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss2 Structured version   Visualization version   GIF version

Theorem tgss2 21013
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss2 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐶,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem tgss2
StepHypRef Expression
1 simpr 479 . . . . 5 ((𝐵𝑉 𝐵 = 𝐶) → 𝐵 = 𝐶)
2 uniexg 7121 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
32adantr 472 . . . . 5 ((𝐵𝑉 𝐵 = 𝐶) → 𝐵 ∈ V)
41, 3eqeltrrd 2840 . . . 4 ((𝐵𝑉 𝐵 = 𝐶) → 𝐶 ∈ V)
5 uniexb 7139 . . . 4 (𝐶 ∈ V ↔ 𝐶 ∈ V)
64, 5sylibr 224 . . 3 ((𝐵𝑉 𝐵 = 𝐶) → 𝐶 ∈ V)
7 tgss3 21012 . . 3 ((𝐵𝑉𝐶 ∈ V) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
86, 7syldan 488 . 2 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
9 eltg2b 20985 . . . . . . 7 (𝐶 ∈ V → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦)))
106, 9syl 17 . . . . . 6 ((𝐵𝑉 𝐵 = 𝐶) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦)))
11 elunii 4593 . . . . . . . . 9 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
1211ancoms 468 . . . . . . . 8 ((𝑦𝐵𝑥𝑦) → 𝑥 𝐵)
13 biimt 349 . . . . . . . 8 (𝑥 𝐵 → (∃𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1412, 13syl 17 . . . . . . 7 ((𝑦𝐵𝑥𝑦) → (∃𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1514ralbidva 3123 . . . . . 6 (𝑦𝐵 → (∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1610, 15sylan9bb 738 . . . . 5 (((𝐵𝑉 𝐵 = 𝐶) ∧ 𝑦𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
17 ralcom3 3243 . . . . 5 (∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)) ↔ ∀𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)))
1816, 17syl6bb 276 . . . 4 (((𝐵𝑉 𝐵 = 𝐶) ∧ 𝑦𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1918ralbidva 3123 . . 3 ((𝐵𝑉 𝐵 = 𝐶) → (∀𝑦𝐵 𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑦𝐵𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
20 dfss3 3733 . . 3 (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑦𝐵 𝑦 ∈ (topGen‘𝐶))
21 ralcom 3236 . . 3 (∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)) ↔ ∀𝑦𝐵𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)))
2219, 20, 213bitr4g 303 . 2 ((𝐵𝑉 𝐵 = 𝐶) → (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
238, 22bitrd 268 1 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  wss 3715   cuni 4588  cfv 6049  topGenctg 16320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16326
This theorem is referenced by:  metss  22534  relowlssretop  33540  relowlpssretop  33541
  Copyright terms: Public domain W3C validator