![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgqioo2 | Structured version Visualization version GIF version |
Description: Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
tgqioo2.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
tgqioo2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Ref | Expression |
---|---|
tgqioo2 | ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgqioo2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
2 | tgqioo2.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | eqid 2760 | . . . . . 6 ⊢ (topGen‘((,) “ (ℚ × ℚ))) = (topGen‘((,) “ (ℚ × ℚ))) | |
4 | 3 | tgqioo 22824 | . . . . 5 ⊢ (topGen‘ran (,)) = (topGen‘((,) “ (ℚ × ℚ))) |
5 | 2, 4, 3 | 3eqtri 2786 | . . . 4 ⊢ 𝐽 = (topGen‘((,) “ (ℚ × ℚ))) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 = (topGen‘((,) “ (ℚ × ℚ)))) |
7 | 1, 6 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ)))) |
8 | iooex 12411 | . . . 4 ⊢ (,) ∈ V | |
9 | imaexg 7269 | . . . 4 ⊢ ((,) ∈ V → ((,) “ (ℚ × ℚ)) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((,) “ (ℚ × ℚ)) ∈ V |
11 | eltg3 20988 | . . 3 ⊢ (((,) “ (ℚ × ℚ)) ∈ V → (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (topGen‘((,) “ (ℚ × ℚ))) ↔ ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
13 | 7, 12 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ∪ cuni 4588 × cxp 5264 ran crn 5267 “ cima 5269 ‘cfv 6049 ℚcq 12001 (,)cioo 12388 topGenctg 16320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-ioo 12392 df-topgen 16326 df-bases 20972 |
This theorem is referenced by: smfpimbor1lem1 41529 |
Copyright terms: Public domain | W3C validator |