![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgptmd | Structured version Visualization version GIF version |
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgptmd | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
2 | eqid 2771 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | istgp 22101 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp2bi 1140 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 TopOpenctopn 16290 Grpcgrp 17630 invgcminusg 17631 Cn ccn 21249 TopMndctmd 22094 TopGrpctgp 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-tgp 22097 |
This theorem is referenced by: tgptps 22104 tgpcn 22108 tgpsubcn 22114 tgpmulg 22117 oppgtgp 22122 tgplacthmeo 22127 subgtgp 22129 clsnsg 22133 tgpt0 22142 prdstgpd 22148 tsmssub 22172 tsmsxp 22178 trgtmd2 22192 nlmtlm 22718 qqhcn 30375 |
Copyright terms: Public domain | W3C validator |