![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpt1 | Structured version Visualization version GIF version |
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
tgpt1.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
tgpt1 | ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 21377 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | tgpgrp 22102 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
3 | eqid 2771 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | eqid 2771 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 3, 4 | grpidcl 17658 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ (Base‘𝐺)) |
7 | tgpt1.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
8 | 7, 3 | tgptopon 22106 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | toponuni 20939 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → (Base‘𝐺) = ∪ 𝐽) |
11 | 6, 10 | eleqtrd 2852 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (0g‘𝐺) ∈ ∪ 𝐽) |
12 | eqid 2771 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
13 | 12 | t1sncld 21351 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ (0g‘𝐺) ∈ ∪ 𝐽) → {(0g‘𝐺)} ∈ (Clsd‘𝐽)) |
14 | 13 | expcom 398 | . . . 4 ⊢ ((0g‘𝐺) ∈ ∪ 𝐽 → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
16 | 4, 7 | tgphaus 22140 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g‘𝐺)} ∈ (Clsd‘𝐽))) |
17 | 15, 16 | sylibrd 249 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
18 | 1, 17 | impbid2 216 | 1 ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 {csn 4316 ∪ cuni 4574 ‘cfv 6031 Basecbs 16064 TopOpenctopn 16290 0gc0g 16308 Grpcgrp 17630 TopOnctopon 20935 Clsdccld 21041 Frect1 21332 Hauscha 21333 TopGrpctgp 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-map 8011 df-0g 16310 df-topgen 16312 df-plusf 17449 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-sbg 17635 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-cn 21252 df-t1 21339 df-haus 21340 df-tx 21586 df-tmd 22096 df-tgp 22097 |
This theorem is referenced by: tgpt0 22142 |
Copyright terms: Public domain | W3C validator |