MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt1 Structured version   Visualization version   GIF version

Theorem tgpt1 22141
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgpt1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))

Proof of Theorem tgpt1
StepHypRef Expression
1 haust1 21377 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 tgpgrp 22102 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3 eqid 2771 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2771 . . . . . . 7 (0g𝐺) = (0g𝐺)
53, 4grpidcl 17658 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
62, 5syl 17 . . . . 5 (𝐺 ∈ TopGrp → (0g𝐺) ∈ (Base‘𝐺))
7 tgpt1.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
87, 3tgptopon 22106 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 toponuni 20939 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
108, 9syl 17 . . . . 5 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
116, 10eleqtrd 2852 . . . 4 (𝐺 ∈ TopGrp → (0g𝐺) ∈ 𝐽)
12 eqid 2771 . . . . . 6 𝐽 = 𝐽
1312t1sncld 21351 . . . . 5 ((𝐽 ∈ Fre ∧ (0g𝐺) ∈ 𝐽) → {(0g𝐺)} ∈ (Clsd‘𝐽))
1413expcom 398 . . . 4 ((0g𝐺) ∈ 𝐽 → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
1511, 14syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → {(0g𝐺)} ∈ (Clsd‘𝐽)))
164, 7tgphaus 22140 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ {(0g𝐺)} ∈ (Clsd‘𝐽)))
1715, 16sylibrd 249 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre → 𝐽 ∈ Haus))
181, 17impbid2 216 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  {csn 4316   cuni 4574  cfv 6031  Basecbs 16064  TopOpenctopn 16290  0gc0g 16308  Grpcgrp 17630  TopOnctopon 20935  Clsdccld 21041  Frect1 21332  Hauscha 21333  TopGrpctgp 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-map 8011  df-0g 16310  df-topgen 16312  df-plusf 17449  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-t1 21339  df-haus 21340  df-tx 21586  df-tmd 22096  df-tgp 22097
This theorem is referenced by:  tgpt0  22142
  Copyright terms: Public domain W3C validator