MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncompeqg Structured version   Visualization version   GIF version

Theorem tgpconncompeqg 21962
Description: The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
tgpconncompeqg.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
tgpconncompeqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   (𝑥)   𝑆(𝑥)

Proof of Theorem tgpconncompeqg
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfec2 7790 . . . . 5 (𝐴𝑋 → [𝐴] = {𝑧𝐴 𝑧})
21adantl 481 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑧𝐴 𝑧})
3 tgpconncomp.s . . . . . . . . 9 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
4 ssrab2 3720 . . . . . . . . . 10 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
5 sspwuni 4643 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
64, 5mpbi 220 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
73, 6eqsstri 3668 . . . . . . . 8 𝑆𝑋
87a1i 11 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
9 tgpconncomp.x . . . . . . . 8 𝑋 = (Base‘𝐺)
10 eqid 2651 . . . . . . . 8 (invg𝐺) = (invg𝐺)
11 eqid 2651 . . . . . . . 8 (+g𝐺) = (+g𝐺)
12 tgpconncompeqg.r . . . . . . . 8 = (𝐺 ~QG 𝑆)
139, 10, 11, 12eqgval 17690 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆𝑋) → (𝐴 𝑧 ↔ (𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆)))
148, 13syldan 486 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝑧 ↔ (𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆)))
15 simp2 1082 . . . . . 6 ((𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆) → 𝑧𝑋)
1614, 15syl6bi 243 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝑧𝑧𝑋))
1716abssdv 3709 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑧𝐴 𝑧} ⊆ 𝑋)
182, 17eqsstrd 3672 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] 𝑋)
19 simpr 476 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
20 tgpgrp 21929 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
21 tgpconncomp.z . . . . . . . 8 0 = (0g𝐺)
229, 11, 21, 10grplinv 17515 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = 0 )
2320, 22sylan 487 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = 0 )
24 tgpconncomp.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
2524, 9tgptopon 21933 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
2625adantr 480 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2720adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
289, 21grpidcl 17497 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
2927, 28syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
303conncompid 21282 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → 0𝑆)
3126, 29, 30syl2anc 694 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑆)
3223, 31eqeltrd 2730 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)
339, 10, 11, 12eqgval 17690 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆𝑋) → (𝐴 𝐴 ↔ (𝐴𝑋𝐴𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)))
348, 33syldan 486 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝐴 ↔ (𝐴𝑋𝐴𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)))
3519, 19, 32, 34mpbir3and 1264 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴 𝐴)
36 elecg 7828 . . . . 5 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3719, 19, 36syl2anc 694 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3835, 37mpbird 247 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴 ∈ [𝐴] )
399, 12, 11eqglact 17692 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
407, 39mp3an2 1452 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
4120, 40sylan 487 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
4241oveq2d 6706 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t [𝐴] ) = (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
43 eqid 2651 . . . . 5 𝐽 = 𝐽
44 eqid 2651 . . . . . . 7 (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧))
4544, 9, 11, 24tgplacthmeo 21954 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
46 hmeocn 21611 . . . . . 6 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
4745, 46syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
48 toponuni 20767 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4926, 48syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
507, 49syl5sseq 3686 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆 𝐽)
513conncompconn 21283 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → (𝐽t 𝑆) ∈ Conn)
5226, 29, 51syl2anc 694 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
5343, 47, 50, 52connima 21276 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)) ∈ Conn)
5442, 53eqeltrd 2730 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t [𝐴] ) ∈ Conn)
55 eqid 2651 . . . 4 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
5655conncompss 21284 . . 3 (([𝐴] 𝑋𝐴 ∈ [𝐴] ∧ (𝐽t [𝐴] ) ∈ Conn) → [𝐴] {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
5718, 38, 54, 56syl3anc 1366 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
58 elpwi 4201 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
5944mptpreima 5666 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) = {𝑧𝑋 ∣ (𝐴(+g𝐺)𝑧) ∈ 𝑦}
60 ssrab2 3720 . . . . . . . . . . . 12 {𝑧𝑋 ∣ (𝐴(+g𝐺)𝑧) ∈ 𝑦} ⊆ 𝑋
6159, 60eqsstri 3668 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋
6261a1i 11 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋)
6329adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 0𝑋)
649, 11, 21grprid 17500 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
6520, 64sylan 487 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
6665adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐴(+g𝐺) 0 ) = 𝐴)
67 simprrl 821 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝐴𝑦)
6866, 67eqeltrd 2730 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐴(+g𝐺) 0 ) ∈ 𝑦)
69 oveq2 6698 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝐴(+g𝐺)𝑧) = (𝐴(+g𝐺) 0 ))
7069eleq1d 2715 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝐴(+g𝐺)𝑧) ∈ 𝑦 ↔ (𝐴(+g𝐺) 0 ) ∈ 𝑦))
7170, 59elrab2 3399 . . . . . . . . . . 11 ( 0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ↔ ( 0𝑋 ∧ (𝐴(+g𝐺) 0 ) ∈ 𝑦))
7263, 68, 71sylanbrc 699 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦))
73 hmeocnvcn 21612 . . . . . . . . . . . . 13 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7445, 73syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7574adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
76 simprl 809 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦𝑋)
7749adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑋 = 𝐽)
7876, 77sseqtrd 3674 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 𝐽)
79 simprrr 822 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐽t 𝑦) ∈ Conn)
8043, 75, 78, 79connima 21276 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦)) ∈ Conn)
813conncompss 21284 . . . . . . . . . 10 ((((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ∧ (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦)) ∈ Conn) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆)
8262, 72, 80, 81syl3anc 1366 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆)
83 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧))) = (𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))
8483, 9, 11, 10grplactcnv 17565 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘((invg𝐺)‘𝐴))))
8520, 84sylan 487 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘((invg𝐺)‘𝐴))))
8685simpld 474 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋)
8783, 9grplactfval 17563 . . . . . . . . . . . . . . 15 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
8887adantl 481 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
89 f1oeq1 6165 . . . . . . . . . . . . . 14 (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
9088, 89syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
9186, 90mpbid 222 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
9291adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
93 f1ocnv 6187 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋(𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
94 f1ofun 6177 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
9592, 93, 943syl 18 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
96 f1odm 6179 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = 𝑋)
9792, 93, 963syl 18 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = 𝑋)
9876, 97sseqtr4d 3675 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
99 funimass3 6373 . . . . . . . . . 10 ((Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∧ 𝑦 ⊆ dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧))) → (((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
10095, 98, 99syl2anc 694 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
10182, 100mpbid 222 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
10241adantr 480 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
103 imacnvcnv 5634 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆) = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)
104102, 103syl6eqr 2703 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
105101, 104sseqtr4d 3675 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ [𝐴] )
106105expr 642 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
10758, 106sylan2 490 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
108107ralrimiva 2995 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
109 eleq2 2719 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
110 oveq2 6698 . . . . . . 7 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
111110eleq1d 2715 . . . . . 6 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
112109, 111anbi12d 747 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
113112ralrab 3401 . . . 4 (∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] ↔ ∀𝑦 ∈ 𝒫 𝑋((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
114108, 113sylibr 224 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] )
115 unissb 4501 . . 3 ( {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ [𝐴] ↔ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] )
116114, 115sylibr 224 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ [𝐴] )
11757, 116eqssd 3653 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  {crab 2945  wss 3607  𝒫 cpw 4191   cuni 4468   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  cima 5146  Fun wfun 5920  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  [cec 7785  Basecbs 15904  +gcplusg 15988  t crest 16128  TopOpenctopn 16129  0gc0g 16147  Grpcgrp 17469  invgcminusg 17470   ~QG cqg 17637  TopOnctopon 20763   Cn ccn 21076  Conncconn 21262  Homeochmeo 21604  TopGrpctgp 21922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-ec 7789  df-map 7901  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-0g 16149  df-topgen 16151  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-eqg 17640  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-cn 21079  df-cnp 21080  df-conn 21263  df-tx 21413  df-hmeo 21606  df-tmd 21923  df-tgp 21924
This theorem is referenced by:  tgpconncomp  21963
  Copyright terms: Public domain W3C validator