Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncomp Structured version   Visualization version   GIF version

Theorem tgpconncomp 22136
 Description: The identity component, the connected component containing the identity element, is a closed (conncompcld 21458) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
tgpconncomp (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺))
Distinct variable groups:   𝑥, 0   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem tgpconncomp
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpconncomp.s . . . . 5 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2 ssrab2 3836 . . . . . 6 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
3 sspwuni 4745 . . . . . 6 ({𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
42, 3mpbi 220 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
51, 4eqsstri 3784 . . . 4 𝑆𝑋
65a1i 11 . . 3 (𝐺 ∈ TopGrp → 𝑆𝑋)
7 tgpconncomp.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
8 tgpconncomp.x . . . . . 6 𝑋 = (Base‘𝐺)
97, 8tgptopon 22106 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
10 tgpgrp 22102 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
11 tgpconncomp.z . . . . . . 7 0 = (0g𝐺)
128, 11grpidcl 17658 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
1310, 12syl 17 . . . . 5 (𝐺 ∈ TopGrp → 0𝑋)
141conncompid 21455 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → 0𝑆)
159, 13, 14syl2anc 573 . . . 4 (𝐺 ∈ TopGrp → 0𝑆)
16 ne0i 4069 . . . 4 ( 0𝑆𝑆 ≠ ∅)
1715, 16syl 17 . . 3 (𝐺 ∈ TopGrp → 𝑆 ≠ ∅)
18 df-ima 5262 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) = ran ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆)
19 resmpt 5590 . . . . . . . . . 10 (𝑆𝑋 → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
205, 19ax-mp 5 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
2120rneqi 5490 . . . . . . . 8 ran ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ↾ 𝑆) = ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
2218, 21eqtri 2793 . . . . . . 7 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) = ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
23 imassrn 5618 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧))
2410adantr 466 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
2524adantr 466 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝐺 ∈ Grp)
266sselda 3752 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑦𝑋)
2726adantr 466 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑋)
28 simpr 471 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
29 eqid 2771 . . . . . . . . . . . . 13 (-g𝐺) = (-g𝐺)
308, 29grpsubcl 17703 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(-g𝐺)𝑧) ∈ 𝑋)
3125, 27, 28, 30syl3anc 1476 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦(-g𝐺)𝑧) ∈ 𝑋)
32 eqid 2771 . . . . . . . . . . 11 (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧))
3331, 32fmptd 6527 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)):𝑋𝑋)
34 frn 6193 . . . . . . . . . 10 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)):𝑋𝑋 → ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑋)
3533, 34syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ran (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑋)
3623, 35syl5ss 3763 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑋)
378, 11, 29grpsubid 17707 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(-g𝐺)𝑦) = 0 )
3824, 26, 37syl2anc 573 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑦(-g𝐺)𝑦) = 0 )
39 simpr 471 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑦𝑆)
40 ovex 6823 . . . . . . . . . . 11 (𝑦(-g𝐺)𝑦) ∈ V
41 eqid 2771 . . . . . . . . . . . 12 (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧))
42 oveq2 6801 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦(-g𝐺)𝑧) = (𝑦(-g𝐺)𝑦))
4341, 42elrnmpt1s 5511 . . . . . . . . . . 11 ((𝑦𝑆 ∧ (𝑦(-g𝐺)𝑦) ∈ V) → (𝑦(-g𝐺)𝑦) ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4439, 40, 43sylancl 574 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑦(-g𝐺)𝑦) ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4538, 44eqeltrrd 2851 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 0 ∈ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)))
4645, 22syl6eleqr 2861 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 0 ∈ ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆))
47 eqid 2771 . . . . . . . . 9 𝐽 = 𝐽
48 eqid 2771 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
49 eqid 2771 . . . . . . . . . . . . . . 15 (invg𝐺) = (invg𝐺)
508, 48, 49, 29grpsubval 17673 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑧𝑋) → (𝑦(-g𝐺)𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
5126, 50sylan 569 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦(-g𝐺)𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
5251mpteq2dva 4878 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
538, 49grpinvcl 17675 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5424, 53sylan 569 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑦𝑆) ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
558, 49grpinvf 17674 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (invg𝐺):𝑋𝑋)
5610, 55syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → (invg𝐺):𝑋𝑋)
5756adantr 466 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺):𝑋𝑋)
5857feqmptd 6391 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺) = (𝑧𝑋 ↦ ((invg𝐺)‘𝑧)))
59 eqidd 2772 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) = (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)))
60 oveq2 6801 . . . . . . . . . . . . 13 (𝑤 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑤) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
6154, 58, 59, 60fmptco 6539 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) = (𝑧𝑋 ↦ (𝑦(+g𝐺)((invg𝐺)‘𝑧))))
6252, 61eqtr4d 2808 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) = ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)))
637, 49grpinvhmeo 22110 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽Homeo𝐽))
6463adantr 466 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (invg𝐺) ∈ (𝐽Homeo𝐽))
65 eqid 2771 . . . . . . . . . . . . . 14 (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) = (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤))
6665, 8, 48, 7tgplacthmeo 22127 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑦𝑋) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽))
6726, 66syldan 579 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽))
68 hmeoco 21796 . . . . . . . . . . . 12 (((invg𝐺) ∈ (𝐽Homeo𝐽) ∧ (𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∈ (𝐽Homeo𝐽)) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
6964, 67, 68syl2anc 573 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑤𝑋 ↦ (𝑦(+g𝐺)𝑤)) ∘ (invg𝐺)) ∈ (𝐽Homeo𝐽))
7062, 69eqeltrd 2850 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
71 hmeocn 21784 . . . . . . . . . 10 ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7270, 71syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
73 toponuni 20939 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
749, 73syl 17 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝑋 = 𝐽)
7574adantr 466 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑋 = 𝐽)
765, 75syl5sseq 3802 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → 𝑆 𝐽)
771conncompconn 21456 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → (𝐽t 𝑆) ∈ Conn)
789, 13, 77syl2anc 573 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (𝐽t 𝑆) ∈ Conn)
7978adantr 466 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝐽t 𝑆) ∈ Conn)
8047, 72, 76, 79connima 21449 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝐽t ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆)) ∈ Conn)
811conncompss 21457 . . . . . . . 8 ((((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑋0 ∈ ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ∧ (𝐽t ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆)) ∈ Conn) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑆)
8236, 46, 80, 81syl3anc 1476 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ((𝑧𝑋 ↦ (𝑦(-g𝐺)𝑧)) “ 𝑆) ⊆ 𝑆)
8322, 82syl5eqssr 3799 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆)
84 ovex 6823 . . . . . . . 8 (𝑦(-g𝐺)𝑧) ∈ V
8584, 41fnmpti 6162 . . . . . . 7 (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) Fn 𝑆
86 df-f 6035 . . . . . . 7 ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆 ↔ ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) Fn 𝑆 ∧ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆))
8785, 86mpbiran 688 . . . . . 6 ((𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆 ↔ ran (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)) ⊆ 𝑆)
8883, 87sylibr 224 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆)
8941fmpt 6523 . . . . 5 (∀𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆 ↔ (𝑧𝑆 ↦ (𝑦(-g𝐺)𝑧)):𝑆𝑆)
9088, 89sylibr 224 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑦𝑆) → ∀𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)
9190ralrimiva 3115 . . 3 (𝐺 ∈ TopGrp → ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)
928, 29issubg4 17821 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝑋𝑆 ≠ ∅ ∧ ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)))
9310, 92syl 17 . . 3 (𝐺 ∈ TopGrp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝑋𝑆 ≠ ∅ ∧ ∀𝑦𝑆𝑧𝑆 (𝑦(-g𝐺)𝑧) ∈ 𝑆)))
946, 17, 91, 93mpbir3and 1427 . 2 (𝐺 ∈ TopGrp → 𝑆 ∈ (SubGrp‘𝐺))
9510adantr 466 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝐺 ∈ Grp)
96 eqid 2771 . . . . . . . . . . 11 (oppg𝐺) = (oppg𝐺)
9796, 49oppginv 17996 . . . . . . . . . 10 (𝐺 ∈ Grp → (invg𝐺) = (invg‘(oppg𝐺)))
9895, 97syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (invg𝐺) = (invg‘(oppg𝐺)))
9998fveq1d 6334 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = ((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦)))
100 simprll 764 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝑦𝑋)
1018, 49grpinvinv 17690 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = 𝑦)
10295, 100, 101syl2anc 573 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘((invg𝐺)‘𝑦)) = 𝑦)
10399, 102eqtr3d 2807 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦)) = 𝑦)
104103oveq1d 6808 . . . . . 6 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) = (𝑦(+g‘(oppg𝐺))𝑧))
105 eqid 2771 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
10648, 96, 105oppgplus 17986 . . . . . 6 (𝑦(+g‘(oppg𝐺))𝑧) = (𝑧(+g𝐺)𝑦)
107104, 106syl6eq 2821 . . . . 5 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) = (𝑧(+g𝐺)𝑦))
1088, 49grpinvcl 17675 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
10995, 100, 108syl2anc 573 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
110 simprlr 765 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → 𝑧𝑋)
111102oveq1d 6808 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
112 simprr 756 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
113111, 112eqeltrd 2850 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)
114 eqid 2771 . . . . . . . . . . 11 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
1158, 49, 48, 114eqgval 17851 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑆𝑋) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)))
11695, 5, 115sylancl 574 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg𝐺)‘((invg𝐺)‘𝑦))(+g𝐺)𝑧) ∈ 𝑆)))
117109, 110, 113, 116mpbir3and 1427 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧)
1188, 11, 7, 1, 114tgpconncompeqg 22135 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
119109, 118syldan 579 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
12096oppgtgp 22122 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
121120adantr 466 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (oppg𝐺) ∈ TopGrp)
12296, 8oppgbas 17988 . . . . . . . . . . . . 13 𝑋 = (Base‘(oppg𝐺))
12396, 11oppgid 17993 . . . . . . . . . . . . 13 0 = (0g‘(oppg𝐺))
12496, 7oppgtopn 17990 . . . . . . . . . . . . 13 𝐽 = (TopOpen‘(oppg𝐺))
125 eqid 2771 . . . . . . . . . . . . 13 ((oppg𝐺) ~QG 𝑆) = ((oppg𝐺) ~QG 𝑆)
126122, 123, 124, 1, 125tgpconncompeqg 22135 . . . . . . . . . . . 12 (((oppg𝐺) ∈ TopGrp ∧ ((invg𝐺)‘𝑦) ∈ 𝑋) → [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
127121, 109, 126syl2anc 573 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) = {𝑥 ∈ 𝒫 𝑋 ∣ (((invg𝐺)‘𝑦) ∈ 𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
128119, 127eqtr4d 2808 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) = [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆))
129128eleq2d 2836 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑧 ∈ [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) ↔ 𝑧 ∈ [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆)))
130 vex 3354 . . . . . . . . . 10 𝑧 ∈ V
131 fvex 6342 . . . . . . . . . 10 ((invg𝐺)‘𝑦) ∈ V
132130, 131elec 7938 . . . . . . . . 9 (𝑧 ∈ [((invg𝐺)‘𝑦)](𝐺 ~QG 𝑆) ↔ ((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧)
133130, 131elec 7938 . . . . . . . . 9 (𝑧 ∈ [((invg𝐺)‘𝑦)]((oppg𝐺) ~QG 𝑆) ↔ ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧)
134129, 132, 1333bitr3g 302 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)(𝐺 ~QG 𝑆)𝑧 ↔ ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧))
135117, 134mpbid 222 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → ((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧)
136 eqid 2771 . . . . . . . . 9 (invg‘(oppg𝐺)) = (invg‘(oppg𝐺))
137122, 136, 105, 125eqgval 17851 . . . . . . . 8 (((oppg𝐺) ∈ TopGrp ∧ 𝑆𝑋) → (((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)))
138121, 5, 137sylancl 574 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦)((oppg𝐺) ~QG 𝑆)𝑧 ↔ (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)))
139135, 138mpbid 222 . . . . . 6 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋 ∧ (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆))
140139simp3d 1138 . . . . 5 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (((invg‘(oppg𝐺))‘((invg𝐺)‘𝑦))(+g‘(oppg𝐺))𝑧) ∈ 𝑆)
141107, 140eqeltrrd 2851 . . . 4 ((𝐺 ∈ TopGrp ∧ ((𝑦𝑋𝑧𝑋) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑆)) → (𝑧(+g𝐺)𝑦) ∈ 𝑆)
142141expr 444 . . 3 ((𝐺 ∈ TopGrp ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆))
143142ralrimivva 3120 . 2 (𝐺 ∈ TopGrp → ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆))
1448, 48isnsg2 17832 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) ∈ 𝑆 → (𝑧(+g𝐺)𝑦) ∈ 𝑆)))
14594, 143, 144sylanbrc 572 1 (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  {crab 3065  Vcvv 3351   ⊆ wss 3723  ∅c0 4063  𝒫 cpw 4297  ∪ cuni 4574   class class class wbr 4786   ↦ cmpt 4863  ran crn 5250   ↾ cres 5251   “ cima 5252   ∘ ccom 5253   Fn wfn 6026  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  [cec 7894  Basecbs 16064  +gcplusg 16149   ↾t crest 16289  TopOpenctopn 16290  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632  SubGrpcsubg 17796  NrmSGrpcnsg 17797   ~QG cqg 17798  oppgcoppg 17982  TopOnctopon 20935   Cn ccn 21249  Conncconn 21435  Homeochmeo 21777  TopGrpctgp 22095 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717  df-er 7896  df-ec 7898  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-tset 16168  df-rest 16291  df-topn 16292  df-0g 16310  df-topgen 16312  df-plusf 17449  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-nsg 17800  df-eqg 17801  df-oppg 17983  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-cn 21252  df-cnp 21253  df-conn 21436  df-tx 21586  df-hmeo 21779  df-tmd 22096  df-tgp 22097 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator