![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgnn | Structured version Visualization version GIF version |
Description: Lemma for tgoldbachgtd 31049. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
Ref | Expression |
---|---|
tgoldbachgtda.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
tgoldbachgtda.n | ⊢ (𝜑 → 𝑁 ∈ 𝑂) |
tgoldbachgtda.0 | ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
Ref | Expression |
---|---|
tgoldbachgnn | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgoldbachgtda.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑂) | |
2 | tgoldbachgtda.o | . . . 4 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | |
3 | 1, 2 | syl6eleq 2849 | . . 3 ⊢ (𝜑 → 𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}) |
4 | elrabi 3499 | . . 3 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} → 𝑁 ∈ ℤ) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
6 | 1red 10247 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
7 | 10nn0 11708 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
8 | 7 | nn0rei 11495 | . . . . 5 ⊢ ;10 ∈ ℝ |
9 | 2nn0 11501 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
10 | 7nn0 11506 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
11 | 9, 10 | deccl 11704 | . . . . 5 ⊢ ;27 ∈ ℕ0 |
12 | reexpcl 13071 | . . . . 5 ⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0) → (;10↑;27) ∈ ℝ) | |
13 | 8, 11, 12 | mp2an 710 | . . . 4 ⊢ (;10↑;27) ∈ ℝ |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (;10↑;27) ∈ ℝ) |
15 | 5 | zred 11674 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
16 | 1re 10231 | . . . . . 6 ⊢ 1 ∈ ℝ | |
17 | 1lt10 11873 | . . . . . 6 ⊢ 1 < ;10 | |
18 | 16, 8, 17 | ltleii 10352 | . . . . 5 ⊢ 1 ≤ ;10 |
19 | expge1 13091 | . . . . 5 ⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0 ∧ 1 ≤ ;10) → 1 ≤ (;10↑;27)) | |
20 | 8, 11, 18, 19 | mp3an 1573 | . . . 4 ⊢ 1 ≤ (;10↑;27) |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ≤ (;10↑;27)) |
22 | tgoldbachgtda.0 | . . 3 ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) | |
23 | 6, 14, 15, 21, 22 | letrd 10386 | . 2 ⊢ (𝜑 → 1 ≤ 𝑁) |
24 | elnnz1 11595 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | |
25 | 5, 23, 24 | sylanbrc 701 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ∈ wcel 2139 {crab 3054 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 0cc0 10128 1c1 10129 ≤ cle 10267 ℕcn 11212 2c2 11262 7c7 11267 ℕ0cn0 11484 ℤcz 11569 ;cdc 11685 ↑cexp 13054 ∥ cdvds 15182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-seq 12996 df-exp 13055 |
This theorem is referenced by: tgoldbachgtde 31047 tgoldbachgtda 31048 |
Copyright terms: Public domain | W3C validator |