![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglowdim1i | Structured version Visualization version GIF version |
Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
Ref | Expression |
---|---|
tglowdim1.p | ⊢ 𝑃 = (Base‘𝐺) |
tglowdim1.d | ⊢ − = (dist‘𝐺) |
tglowdim1.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglowdim1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglowdim1.1 | ⊢ (𝜑 → 2 ≤ (#‘𝑃)) |
tglowdim1i.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Ref | Expression |
---|---|
tglowdim1i | ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglowdim1.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglowdim1.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | tglowdim1.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglowdim1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 𝐺 ∈ TarskiG) |
6 | tglowdim1.1 | . . . . . 6 ⊢ (𝜑 → 2 ≤ (#‘𝑃)) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → 2 ≤ (#‘𝑃)) |
8 | 1, 2, 3, 5, 7 | tglowdim1 25440 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
9 | simpllr 815 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
10 | simplr 807 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
11 | eqeq2 2662 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑎 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑎)) | |
12 | 11 | rspccva 3339 | . . . . . . . . 9 ⊢ ((∀𝑦 ∈ 𝑃 𝑋 = 𝑦 ∧ 𝑎 ∈ 𝑃) → 𝑋 = 𝑎) |
13 | 9, 10, 12 | syl2anc 694 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑎) |
14 | eqeq2 2662 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑏 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑏)) | |
15 | 14 | rspccva 3339 | . . . . . . . . 9 ⊢ ((∀𝑦 ∈ 𝑃 𝑋 = 𝑦 ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) |
16 | 9, 15 | sylancom 702 | . . . . . . . 8 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑋 = 𝑏) |
17 | 13, 16 | eqtr3d 2687 | . . . . . . 7 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → 𝑎 = 𝑏) |
18 | nne 2827 | . . . . . . 7 ⊢ (¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏) | |
19 | 17, 18 | sylibr 224 | . . . . . 6 ⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ¬ 𝑎 ≠ 𝑏) |
20 | 19 | nrexdv 3030 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) ∧ 𝑎 ∈ 𝑃) → ¬ ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
21 | 20 | nrexdv 3030 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) → ¬ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 𝑎 ≠ 𝑏) |
22 | 8, 21 | pm2.65da 599 | . . 3 ⊢ (𝜑 → ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) |
23 | rexnal 3024 | . . 3 ⊢ (∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀𝑦 ∈ 𝑃 𝑋 = 𝑦) | |
24 | 22, 23 | sylibr 224 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) |
25 | df-ne 2824 | . . 3 ⊢ (𝑋 ≠ 𝑦 ↔ ¬ 𝑋 = 𝑦) | |
26 | 25 | rexbii 3070 | . 2 ⊢ (∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦) |
27 | 24, 26 | sylibr 224 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 ‘cfv 5926 ≤ cle 10113 2c2 11108 #chash 13157 Basecbs 15904 distcds 15997 TarskiGcstrkg 25374 Itvcitv 25380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: colline 25589 |
Copyright terms: Public domain | W3C validator |