Step | Hyp | Ref
| Expression |
1 | | tglng.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
2 | | tglng.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
3 | | tglng.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
4 | 1, 2, 3 | tglng 25661 |
. . . . . . 7
⊢ (𝐺 ∈ TarskiG → 𝐿 = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
5 | 4 | rneqd 5508 |
. . . . . 6
⊢ (𝐺 ∈ TarskiG → ran 𝐿 = ran (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
6 | 5 | eleq2d 2825 |
. . . . 5
⊢ (𝐺 ∈ TarskiG → (𝑝 ∈ ran 𝐿 ↔ 𝑝 ∈ ran (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
7 | 6 | biimpa 502 |
. . . 4
⊢ ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝 ∈ ran (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
8 | | eqid 2760 |
. . . . . 6
⊢ (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
9 | | fvex 6363 |
. . . . . . . 8
⊢
(Base‘𝐺)
∈ V |
10 | 1, 9 | eqeltri 2835 |
. . . . . . 7
⊢ 𝑃 ∈ V |
11 | 10 | rabex 4964 |
. . . . . 6
⊢ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∈ V |
12 | 8, 11 | elrnmpt2 6939 |
. . . . 5
⊢ (𝑝 ∈ ran (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
13 | | ssrab2 3828 |
. . . . . . . 8
⊢ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃 |
14 | | sseq1 3767 |
. . . . . . . 8
⊢ (𝑝 = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → (𝑝 ⊆ 𝑃 ↔ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ⊆ 𝑃)) |
15 | 13, 14 | mpbiri 248 |
. . . . . . 7
⊢ (𝑝 = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝 ⊆ 𝑃) |
16 | 15 | rexlimivw 3167 |
. . . . . 6
⊢
(∃𝑦 ∈
(𝑃 ∖ {𝑥})𝑝 = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝 ⊆ 𝑃) |
17 | 16 | rexlimivw 3167 |
. . . . 5
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ (𝑃 ∖ {𝑥})𝑝 = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} → 𝑝 ⊆ 𝑃) |
18 | 12, 17 | sylbi 207 |
. . . 4
⊢ (𝑝 ∈ ran (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑝 ⊆ 𝑃) |
19 | 7, 18 | syl 17 |
. . 3
⊢ ((𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿) → 𝑝 ⊆ 𝑃) |
20 | 19 | ralrimiva 3104 |
. 2
⊢ (𝐺 ∈ TarskiG →
∀𝑝 ∈ ran 𝐿 𝑝 ⊆ 𝑃) |
21 | | unissb 4621 |
. 2
⊢ (∪ ran 𝐿 ⊆ 𝑃 ↔ ∀𝑝 ∈ ran 𝐿 𝑝 ⊆ 𝑃) |
22 | 20, 21 | sylibr 224 |
1
⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |