![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnpt | Structured version Visualization version GIF version |
Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
Ref | Expression |
---|---|
tglng.p | ⊢ 𝑃 = (Base‘𝐺) |
tglng.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglng.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglnpt.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnpt.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
tglnpt.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
tglnpt | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglnpt.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
2 | tglng.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglng.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglng.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | 2, 3, 4 | tglnunirn 25663 | . . 3 ⊢ (𝐺 ∈ TarskiG → ∪ ran 𝐿 ⊆ 𝑃) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∪ ran 𝐿 ⊆ 𝑃) |
7 | tglnpt.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | elssuni 4619 | . . . 4 ⊢ (𝐴 ∈ ran 𝐿 → 𝐴 ⊆ ∪ ran 𝐿) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ran 𝐿) |
10 | tglnpt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
11 | 9, 10 | sseldd 3745 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ ran 𝐿) |
12 | 6, 11 | sseldd 3745 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 ran crn 5267 ‘cfv 6049 Basecbs 16079 TarskiGcstrkg 25549 Itvcitv 25555 LineGclng 25556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 df-iota 6012 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-trkg 25572 |
This theorem is referenced by: mirln 25791 mirln2 25792 perpcom 25828 perpneq 25829 ragperp 25832 foot 25834 footne 25835 footeq 25836 hlperpnel 25837 perprag 25838 perpdragALT 25839 perpdrag 25840 colperpexlem3 25844 oppne3 25855 oppcom 25856 oppnid 25858 opphllem1 25859 opphllem2 25860 opphllem3 25861 opphllem4 25862 opphllem5 25863 opphllem6 25864 oppperpex 25865 opphl 25866 outpasch 25867 lnopp2hpgb 25875 hpgerlem 25877 colopp 25881 colhp 25882 lmieu 25896 lmimid 25906 lnperpex 25915 trgcopy 25916 trgcopyeulem 25917 |
Copyright terms: Public domain | W3C validator |