![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinerflx1 | Structured version Visualization version GIF version |
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tglinerflx1 | ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglineelsb2.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | tglineelsb2.2 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | tglineelsb2.4 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
8 | eqid 2771 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
9 | 1, 8, 2, 4, 5, 6 | tgbtwntriv1 25607 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐼𝑄)) |
10 | 1, 2, 3, 4, 5, 6, 5, 7, 9 | btwnlng1 25735 | 1 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 LineGclng 25557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 |
This theorem is referenced by: tghilberti1 25753 tglnne0 25756 tglnpt2 25757 tglineneq 25760 coltr 25763 colline 25765 footex 25834 foot 25835 footne 25836 perprag 25839 colperp 25842 colperpexlem3 25845 mideulem2 25847 outpasch 25868 hlpasch 25869 lnopp2hpgb 25876 colopp 25882 lmieu 25897 lmimid 25907 hypcgrlem1 25912 hypcgrlem2 25913 trgcopyeulem 25918 tgasa1 25960 |
Copyright terms: Public domain | W3C validator |