MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinerflx1 Structured version   Visualization version   GIF version

Theorem tglinerflx1 25749
Description: Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinerflx1 (𝜑𝑃 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglinerflx1
StepHypRef Expression
1 tglineelsb2.p . 2 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . 2 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . 2 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . 2 (𝜑𝑃𝐵)
6 tglineelsb2.2 . 2 (𝜑𝑄𝐵)
7 tglineelsb2.4 . 2 (𝜑𝑃𝑄)
8 eqid 2771 . . 3 (dist‘𝐺) = (dist‘𝐺)
91, 8, 2, 4, 5, 6tgbtwntriv1 25607 . 2 (𝜑𝑃 ∈ (𝑃𝐼𝑄))
101, 2, 3, 4, 5, 6, 5, 7, 9btwnlng1 25735 1 (𝜑𝑃 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wne 2943  cfv 6031  (class class class)co 6793  Basecbs 16064  distcds 16158  TarskiGcstrkg 25550  Itvcitv 25556  LineGclng 25557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-trkgc 25568  df-trkgb 25569  df-trkgcb 25570  df-trkg 25573
This theorem is referenced by:  tghilberti1  25753  tglnne0  25756  tglnpt2  25757  tglineneq  25760  coltr  25763  colline  25765  footex  25834  foot  25835  footne  25836  perprag  25839  colperp  25842  colperpexlem3  25845  mideulem2  25847  outpasch  25868  hlpasch  25869  lnopp2hpgb  25876  colopp  25882  lmieu  25897  lmimid  25907  hypcgrlem1  25912  hypcgrlem2  25913  trgcopyeulem  25918  tgasa1  25960
  Copyright terms: Public domain W3C validator