![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgioo2 | Structured version Visualization version GIF version |
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
tgioo2.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
tgioo2 | ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . 2 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | cnxmet 22777 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
3 | ax-resscn 10185 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | tgioo2.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopn 22786 | . . . 4 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
6 | eqid 2760 | . . . 4 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
7 | 1, 5, 6 | metrest 22530 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ ℝ ⊆ ℂ) → (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))) |
8 | 2, 3, 7 | mp2an 710 | . 2 ⊢ (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
9 | 1, 8 | tgioo 22800 | 1 ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 × cxp 5264 ran crn 5267 ↾ cres 5268 ∘ ccom 5270 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 ℝcr 10127 − cmin 10458 (,)cioo 12368 abscabs 14173 ↾t crest 16283 TopOpenctopn 16284 topGenctg 16300 ∞Metcxmt 19933 MetOpencmopn 19938 ℂfldccnfld 19948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-fz 12520 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-plusg 16156 df-mulr 16157 df-starv 16158 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-rest 16285 df-topn 16286 df-topgen 16306 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-cnfld 19949 df-top 20901 df-topon 20918 df-bases 20952 |
This theorem is referenced by: rerest 22808 tgioo3 22809 zcld2 22819 metdcn 22844 ngnmcncn 22849 metdscn2 22861 abscncfALT 22924 cnrehmeo 22953 rellycmp 22957 evth 22959 evth2 22960 lebnumlem2 22962 resscdrg 23354 retopn 23367 cncombf 23624 cnmbf 23625 dvcjbr 23911 rolle 23952 cmvth 23953 mvth 23954 dvlip 23955 dvlipcn 23956 dvlip2 23957 c1liplem1 23958 dvgt0lem1 23964 dvle 23969 dvivthlem1 23970 dvne0 23973 lhop1lem 23975 lhop2 23977 lhop 23978 dvcnvrelem1 23979 dvcnvrelem2 23980 dvcnvre 23981 dvcvx 23982 dvfsumle 23983 dvfsumabs 23985 dvfsumlem2 23989 ftc1 24004 ftc1cn 24005 ftc2 24006 ftc2ditglem 24007 itgparts 24009 itgsubstlem 24010 taylthlem2 24327 efcvx 24402 pige3 24468 dvloglem 24593 logdmopn 24594 advlog 24599 advlogexp 24600 logccv 24608 loglesqrt 24698 lgamgulmlem2 24955 ftalem3 25000 log2sumbnd 25432 nmcnc 27860 ipasslem7 28000 rmulccn 30283 raddcn 30284 ftc2re 30985 knoppcnlem10 32798 knoppcnlem11 32799 broucube 33756 ftc1cnnc 33797 ftc2nc 33807 dvasin 33809 dvacos 33810 dvreasin 33811 dvreacos 33812 areacirclem1 33813 areacirc 33818 itgpowd 38302 lhe4.4ex1a 39030 refsumcn 39688 xrtgcntopre 40207 tgioo4 40303 climreeq 40348 limcresiooub 40377 limcresioolb 40378 lptioo2cn 40380 lptioo1cn 40381 limclner 40386 cncfiooicclem1 40609 jumpncnp 40614 fperdvper 40636 dvmptresicc 40637 dvresioo 40639 dvbdfbdioolem1 40646 itgsin0pilem1 40668 itgsinexplem1 40672 itgcoscmulx 40688 itgsubsticclem 40694 itgiccshift 40699 itgperiod 40700 itgsbtaddcnst 40701 dirkeritg 40822 dirkercncflem2 40824 dirkercncflem3 40825 dirkercncflem4 40826 dirkercncf 40827 fourierdlem28 40855 fourierdlem32 40859 fourierdlem33 40860 fourierdlem39 40866 fourierdlem56 40882 fourierdlem57 40883 fourierdlem58 40884 fourierdlem59 40885 fourierdlem60 40886 fourierdlem61 40887 fourierdlem62 40888 fourierdlem68 40894 fourierdlem72 40898 fourierdlem73 40899 fourierdlem74 40900 fourierdlem75 40901 fourierdlem80 40906 fourierdlem94 40920 fourierdlem103 40929 fourierdlem104 40930 fourierdlem113 40939 fouriercnp 40946 fouriersw 40951 fouriercn 40952 etransclem2 40956 etransclem23 40977 etransclem35 40989 etransclem38 40992 etransclem39 40993 etransclem44 40998 etransclem45 40999 etransclem46 41000 etransclem47 41001 |
Copyright terms: Public domain | W3C validator |