![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tghilberti2 | Structured version Visualization version GIF version |
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tghilberti2 | ⊢ (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . . . . 6 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | 3ad2ant1 1127 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝐺 ∈ TarskiG) |
6 | tglineelsb2.1 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
7 | 6 | 3ad2ant1 1127 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ∈ 𝐵) |
8 | tglineelsb2.2 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
9 | 8 | 3ad2ant1 1127 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑄 ∈ 𝐵) |
10 | tglineelsb2.4 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
11 | 10 | 3ad2ant1 1127 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) |
12 | simp2l 1241 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 ∈ ran 𝐿) | |
13 | simp3ll 1310 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ∈ 𝑥) | |
14 | simp3lr 1311 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑄 ∈ 𝑥) | |
15 | 1, 2, 3, 5, 7, 9, 11, 11, 12, 13, 14 | tglinethru 25752 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = (𝑃𝐿𝑄)) |
16 | simp2r 1242 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ ran 𝐿) | |
17 | simp3rl 1312 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ∈ 𝑦) | |
18 | simp3rr 1313 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑄 ∈ 𝑦) | |
19 | 1, 2, 3, 5, 7, 9, 11, 11, 16, 17, 18 | tglinethru 25752 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃𝐿𝑄)) |
20 | 15, 19 | eqtr4d 2808 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦) |
21 | 20 | 3expia 1114 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿)) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
22 | 21 | ralrimivva 3120 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐿∀𝑦 ∈ ran 𝐿(((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
23 | eleq2w 2834 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
24 | eleq2w 2834 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
25 | 23, 24 | anbi12d 616 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
26 | 25 | rmo4 3551 | . 2 ⊢ (∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ ran 𝐿∀𝑦 ∈ ran 𝐿(((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
27 | 22, 26 | sylibr 224 | 1 ⊢ (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃*wrmo 3064 ran crn 5250 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 TarskiGcstrkg 25550 Itvcitv 25556 LineGclng 25557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 df-s2 13802 df-s3 13803 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 df-cgrg 25627 |
This theorem is referenced by: tglinethrueu 25755 |
Copyright terms: Public domain | W3C validator |