![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgdif0 | Structured version Visualization version GIF version |
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
tgdif0 | ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 3904 | . . . . . . 7 ⊢ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) | |
2 | 1 | unieqi 4477 | . . . . . 6 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) |
3 | unidif0 4868 | . . . . . 6 ⊢ ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) = ∪ (𝐵 ∩ 𝒫 𝑥) | |
4 | 2, 3 | eqtri 2673 | . . . . 5 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥) |
5 | 4 | sseq2i 3663 | . . . 4 ⊢ (𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
6 | 5 | abbii 2768 | . . 3 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} |
7 | difexg 4841 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V) | |
8 | tgval 20807 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) |
10 | tgval 20807 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
11 | 6, 9, 10 | 3eqtr4a 2711 | . 2 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
12 | difsnexi 7012 | . . . . 5 ⊢ ((𝐵 ∖ {∅}) ∈ V → 𝐵 ∈ V) | |
13 | 12 | con3i 150 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ¬ (𝐵 ∖ {∅}) ∈ V) |
14 | fvprc 6223 | . . . 4 ⊢ (¬ (𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) |
16 | fvprc 6223 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘𝐵) = ∅) | |
17 | 15, 16 | eqtr4d 2688 | . 2 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
18 | 11, 17 | pm2.61i 176 | 1 ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 {cab 2637 Vcvv 3231 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 {csn 4210 ∪ cuni 4468 ‘cfv 5926 topGenctg 16145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-topgen 16151 |
This theorem is referenced by: prdsxmslem2 22381 |
Copyright terms: Public domain | W3C validator |