MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Structured version   Visualization version   GIF version

Theorem tgcmp 21252
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 21896, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable groups:   𝑦,𝑧,𝐵   𝑦,𝑋,𝑧

Proof of Theorem tgcmp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (topGen‘𝐵) = (topGen‘𝐵)
21iscmp 21239 . . . 4 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧)))
32simprbi 479 . . 3 ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧))
4 unitg 20819 . . . . . . . 8 (𝐵 ∈ TopBases → (topGen‘𝐵) = 𝐵)
5 eqtr3 2672 . . . . . . . 8 (( (topGen‘𝐵) = 𝐵𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
64, 5sylan 487 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) = 𝑋)
76eqeq1d 2653 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑦𝑋 = 𝑦))
86eqeq1d 2653 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑧𝑋 = 𝑧))
98rexbidv 3081 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
107, 9imbi12d 333 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1110ralbidv 3015 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) ↔ ∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
12 bastg 20818 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1312adantr 480 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (topGen‘𝐵))
14 sspwb 4947 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) ↔ 𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵))
1513, 14sylib 208 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → 𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵))
16 ssralv 3699 . . . . 5 (𝒫 𝐵 ⊆ 𝒫 (topGen‘𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1715, 16syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
1811, 17sylbid 230 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) (topGen‘𝐵) = 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
193, 18syl5 34 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
20 elpwi 4201 . . . . 5 (𝑢 ∈ 𝒫 (topGen‘𝐵) → 𝑢 ⊆ (topGen‘𝐵))
21 simprr 811 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝑢)
22 simprl 809 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 ⊆ (topGen‘𝐵))
2322sselda 3636 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → 𝑡 ∈ (topGen‘𝐵))
2423adantrr 753 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑡 ∈ (topGen‘𝐵))
25 simprr 811 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → 𝑦𝑡)
26 tg2 20817 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (topGen‘𝐵) ∧ 𝑦𝑡) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2724, 25, 26syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑡𝑢𝑦𝑡)) → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡))
2827expr 642 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ 𝑡𝑢) → (𝑦𝑡 → ∃𝑤𝐵 (𝑦𝑤𝑤𝑡)))
2928reximdva 3046 . . . . . . . . . . . . 13 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑡𝑢 𝑦𝑡 → ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡)))
30 eluni2 4472 . . . . . . . . . . . . 13 (𝑦 𝑢 ↔ ∃𝑡𝑢 𝑦𝑡)
31 elunirab 4480 . . . . . . . . . . . . . 14 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
32 r19.42v 3121 . . . . . . . . . . . . . . 15 (∃𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
3332rexbii 3070 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑤𝐵 (𝑦𝑤 ∧ ∃𝑡𝑢 𝑤𝑡))
34 rexcom 3128 . . . . . . . . . . . . . 14 (∃𝑤𝐵𝑡𝑢 (𝑦𝑤𝑤𝑡) ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3531, 33, 343bitr2i 288 . . . . . . . . . . . . 13 (𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ ∃𝑡𝑢𝑤𝐵 (𝑦𝑤𝑤𝑡))
3629, 30, 353imtr4g 285 . . . . . . . . . . . 12 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (𝑦 𝑢𝑦 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
3736ssrdv 3642 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑢 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
3821, 37eqsstrd 3672 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
39 ssrab2 3720 . . . . . . . . . . . 12 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
4039unissi 4493 . . . . . . . . . . 11 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵
41 simplr 807 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = 𝐵)
4240, 41syl5sseqr 3687 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝑋)
4338, 42eqssd 3653 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → 𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
44 elpw2g 4857 . . . . . . . . . . . 12 (𝐵 ∈ TopBases → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4544ad2antrr 762 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 ↔ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ⊆ 𝐵))
4639, 45mpbiri 248 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵)
47 unieq 4476 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
4847eqeq2d 2661 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝑋 = 𝑦𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡}))
49 pweq 4194 . . . . . . . . . . . . . 14 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → 𝒫 𝑦 = 𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
5049ineq1d 3846 . . . . . . . . . . . . 13 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (𝒫 𝑦 ∩ Fin) = (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin))
5150rexeqdv 3175 . . . . . . . . . . . 12 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
5248, 51imbi12d 333 . . . . . . . . . . 11 (𝑦 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ((𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5352rspcv 3336 . . . . . . . . . 10 ({𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∈ 𝒫 𝐵 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5446, 53syl 17 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧)))
5543, 54mpid 44 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧))
56 elfpw 8309 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ↔ (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∧ 𝑧 ∈ Fin))
5756simprbi 479 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ∈ Fin)
5857ad2antrl 764 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ∈ Fin)
5956simplbi 475 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
6059ad2antrl 764 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → 𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡})
61 ssrab 3713 . . . . . . . . . . . . 13 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ↔ (𝑧𝐵 ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡))
6261simprbi 479 . . . . . . . . . . . 12 (𝑧 ⊆ {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
6360, 62syl 17 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∀𝑤𝑧𝑡𝑢 𝑤𝑡)
64 sseq2 3660 . . . . . . . . . . . 12 (𝑡 = (𝑓𝑤) → (𝑤𝑡𝑤 ⊆ (𝑓𝑤)))
6564ac6sfi 8245 . . . . . . . . . . 11 ((𝑧 ∈ Fin ∧ ∀𝑤𝑧𝑡𝑢 𝑤𝑡) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
6658, 63, 65syl2anc 694 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑓(𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)))
67 frn 6091 . . . . . . . . . . . . 13 (𝑓:𝑧𝑢 → ran 𝑓𝑢)
6867ad2antrl 764 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑢)
69 ffn 6083 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢𝑓 Fn 𝑧)
70 dffn4 6159 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑧𝑓:𝑧onto→ran 𝑓)
7169, 70sylib 208 . . . . . . . . . . . . . 14 (𝑓:𝑧𝑢𝑓:𝑧onto→ran 𝑓)
7271adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤)) → 𝑓:𝑧onto→ran 𝑓)
73 fofi 8293 . . . . . . . . . . . . 13 ((𝑧 ∈ Fin ∧ 𝑓:𝑧onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7458, 72, 73syl2an 493 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ Fin)
75 elfpw 8309 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran 𝑓𝑢 ∧ ran 𝑓 ∈ Fin))
7668, 74, 75sylanbrc 699 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin))
77 simplrr 818 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑧)
78 uniiun 4605 . . . . . . . . . . . . . . . 16 𝑧 = 𝑤𝑧 𝑤
79 ss2iun 4568 . . . . . . . . . . . . . . . 16 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑤𝑧 𝑤 𝑤𝑧 (𝑓𝑤))
8078, 79syl5eqss 3682 . . . . . . . . . . . . . . 15 (∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤) → 𝑧 𝑤𝑧 (𝑓𝑤))
8180ad2antll 765 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 𝑤𝑧 (𝑓𝑤))
82 fniunfv 6545 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑧 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8369, 82syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝑧𝑢 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8483ad2antrl 764 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑤𝑧 (𝑓𝑤) = ran 𝑓)
8581, 84sseqtrd 3674 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑧 ran 𝑓)
8677, 85eqsstrd 3672 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 ran 𝑓)
8768unissd 4494 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓 𝑢)
8821ad2antrr 762 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = 𝑢)
8987, 88sseqtr4d 3675 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ran 𝑓𝑋)
9086, 89eqssd 3653 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → 𝑋 = ran 𝑓)
91 unieq 4476 . . . . . . . . . . . . 13 (𝑣 = ran 𝑓 𝑣 = ran 𝑓)
9291eqeq2d 2661 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 → (𝑋 = 𝑣𝑋 = ran 𝑓))
9392rspcev 3340 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9476, 90, 93syl2anc 694 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) ∧ (𝑓:𝑧𝑢 ∧ ∀𝑤𝑧 𝑤 ⊆ (𝑓𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9566, 94exlimddv 1903 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin) ∧ 𝑋 = 𝑧)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)
9695rexlimdvaa 3061 . . . . . . . 8 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∃𝑧 ∈ (𝒫 {𝑤𝐵 ∣ ∃𝑡𝑢 𝑤𝑡} ∩ Fin)𝑋 = 𝑧 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9755, 96syld 47 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
9897expr 642 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑋 = 𝑢 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
9998com23 86 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
10020, 99sylan2 490 . . . 4 (((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) ∧ 𝑢 ∈ 𝒫 (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
101100ralrimdva 2998 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
102 tgcl 20821 . . . . . 6 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
103102adantr 480 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (topGen‘𝐵) ∈ Top)
1041iscmp 21239 . . . . . 6 ((topGen‘𝐵) ∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
105104baib 964 . . . . 5 ((topGen‘𝐵) ∈ Top → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
106103, 105syl 17 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣)))
1076eqeq1d 2653 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑢𝑋 = 𝑢))
1086eqeq1d 2653 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ( (topGen‘𝐵) = 𝑣𝑋 = 𝑣))
109108rexbidv 3081 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣))
110107, 109imbi12d 333 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ (𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
111110ralbidv 3015 . . . 4 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑢 ∈ 𝒫 (topGen‘𝐵)( (topGen‘𝐵) = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin) (topGen‘𝐵) = 𝑣) ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
112106, 111bitrd 268 . . 3 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘𝐵)(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = 𝑣)))
113101, 112sylibrd 249 . 2 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → (topGen‘𝐵) ∈ Comp))
11419, 113impbid 202 1 ((𝐵 ∈ TopBases ∧ 𝑋 = 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  {crab 2945  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468   ciun 4552  ran crn 5144   Fn wfn 5921  wf 5922  ontowfo 5924  cfv 5926  Fincfn 7997  topGenctg 16145  Topctop 20746  TopBasesctb 20797  Compccmp 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-fin 8001  df-topgen 16151  df-top 20747  df-bases 20798  df-cmp 21238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator