![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrneq | Structured version Visualization version GIF version |
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
tgcgrneq.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
tgcgrneq | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrneq.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomlr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | tgcgrcomlr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | tgcgrcomlr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
9 | tgcgrcomlr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
10 | tgcgrcomlr.6 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | tgcgreqb 25596 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
12 | 11 | necon3bid 2986 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
13 | 1, 12 | mpbid 222 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 distcds 16157 TarskiGcstrkg 25549 Itvcitv 25555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-nul 4920 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-trkgc 25567 df-trkg 25572 |
This theorem is referenced by: hlcgrex 25731 midexlem 25807 footex 25833 mideulem2 25846 opphllem3 25861 trgcopy 25916 iscgra1 25922 cgrane1 25924 cgrane2 25925 cgrcgra 25933 cgrg3col4 25954 tgsas2 25957 tgsas3 25958 tgasa1 25959 tgsss1 25961 |
Copyright terms: Public domain | W3C validator |