MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrneq Structured version   Visualization version   GIF version

Theorem tgcgrneq 25598
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
tgcgrneq.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tgcgrneq (𝜑𝐶𝐷)

Proof of Theorem tgcgrneq
StepHypRef Expression
1 tgcgrneq.1 . 2 (𝜑𝐴𝐵)
2 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . 4 = (dist‘𝐺)
4 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . . 4 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . . 4 (𝜑𝐵𝑃)
8 tgcgrcomlr.c . . . 4 (𝜑𝐶𝑃)
9 tgcgrcomlr.d . . . 4 (𝜑𝐷𝑃)
10 tgcgrcomlr.6 . . . 4 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 25596 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
1211necon3bid 2986 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
131, 12mpbid 222 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  wne 2942  cfv 6031  (class class class)co 6792  Basecbs 16063  distcds 16157  TarskiGcstrkg 25549  Itvcitv 25555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-nul 4920
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-iota 5994  df-fv 6039  df-ov 6795  df-trkgc 25567  df-trkg 25572
This theorem is referenced by:  hlcgrex  25731  midexlem  25807  footex  25833  mideulem2  25846  opphllem3  25861  trgcopy  25916  iscgra1  25922  cgrane1  25924  cgrane2  25925  cgrcgra  25933  cgrg3col4  25954  tgsas2  25957  tgsas3  25958  tgasa1  25959  tgsss1  25961
  Copyright terms: Public domain W3C validator