![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnexch3 | Structured version Visualization version GIF version |
Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnexch3.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnexch3.6 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnexch3 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | tgbtwnintr.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | tgbtwnexch3.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
10 | 1, 2, 3, 4, 8, 5, 6, 9 | tgbtwncom 25604 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
11 | tgbtwnexch3.6 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
12 | 1, 2, 3, 4, 8, 6, 7, 11 | tgbtwncom 25604 | . 2 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐴)) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 | tgbtwnintr 25609 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 |
This theorem is referenced by: tgbtwnouttr2 25611 tgifscgr 25624 tgcgrxfr 25634 tgbtwnconn1lem1 25688 tgbtwnconn1lem2 25689 tgbtwnconn1lem3 25690 tgbtwnconn2 25692 tgbtwnconn3 25693 btwnhl 25730 tglineeltr 25747 miriso 25786 krippenlem 25806 outpasch 25868 hlpasch 25869 |
Copyright terms: Public domain | W3C validator |