![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnconn3 | Structured version Visualization version GIF version |
Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tgbtwnconn.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwnconn.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwnconn.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnconn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnconn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnconn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnconn.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnconn3.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
tgbtwnconn3.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnconn3 | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2770 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tgbtwnconn.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwnconn.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG) |
6 | tgbtwnconn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ 𝑃) |
8 | tgbtwnconn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ 𝑃) |
10 | tgbtwnconn.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶 ∈ 𝑃) |
12 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1) | |
13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgldim0itv 25619 | . . 3 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶)) |
14 | 13 | orcd 853 | . 2 ⊢ ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
15 | 4 | ad3antrrr 701 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐺 ∈ TarskiG) |
16 | simplr 744 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ∈ 𝑃) | |
17 | 8 | ad3antrrr 701 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ 𝑃) |
18 | 6 | ad3antrrr 701 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ 𝑃) |
19 | 10 | ad3antrrr 701 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ 𝑃) |
20 | simprr 748 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ≠ 𝑝) | |
21 | 20 | necomd 2997 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ≠ 𝐴) |
22 | tgbtwnconn.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
23 | 22 | ad3antrrr 701 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐷 ∈ 𝑃) |
24 | tgbtwnconn3.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
25 | 24 | ad3antrrr 701 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
26 | simprl 746 | . . . . . . 7 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝)) | |
27 | 1, 2, 3, 15, 23, 17, 16, 26 | tgbtwncom 25603 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷)) |
28 | 1, 2, 3, 15, 18, 17, 16, 23, 25, 27 | tgbtwnintr 25608 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝)) |
29 | 1, 2, 3, 15, 18, 17, 16, 28 | tgbtwncom 25603 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵)) |
30 | tgbtwnconn3.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
31 | 30 | ad3antrrr 701 | . . . . . . 7 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷)) |
32 | 1, 2, 3, 15, 17, 19, 23, 31 | tgbtwncom 25603 | . . . . . 6 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴)) |
33 | 1, 2, 3, 15, 23, 19, 17, 16, 32, 26 | tgbtwnexch3 25609 | . . . . 5 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝)) |
34 | 1, 2, 3, 15, 19, 17, 16, 33 | tgbtwncom 25603 | . . . 4 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶)) |
35 | 1, 3, 15, 16, 17, 18, 19, 21, 29, 34 | tgbtwnconn2 25691 | . . 3 ⊢ ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
36 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG) |
37 | 22 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷 ∈ 𝑃) |
38 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴 ∈ 𝑃) |
39 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃)) | |
40 | 1, 2, 3, 36, 37, 38, 39 | tgbtwndiff 25621 | . . 3 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑝 ∈ 𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
41 | 35, 40 | r19.29a 3225 | . 2 ⊢ ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
42 | 1, 8 | tgldimor 25617 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
43 | 14, 41, 42 | mpjaodan 939 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 1c1 10138 ≤ cle 10276 2c2 11271 ♯chash 13320 Basecbs 16063 distcds 16157 TarskiGcstrkg 25549 Itvcitv 25555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-xnn0 11565 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-hash 13321 df-word 13494 df-concat 13496 df-s1 13497 df-s2 13801 df-s3 13802 df-trkgc 25567 df-trkgb 25568 df-trkgcb 25569 df-trkg 25572 df-cgrg 25626 |
This theorem is referenced by: tgbtwnconnln3 25693 hltr 25725 hlbtwn 25726 hlpasch 25868 |
Copyright terms: Public domain | W3C validator |