Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgblthelfgottOLD Structured version   Visualization version   GIF version

Theorem tgblthelfgottOLD 42237
Description: Obsolete version of tgblthelfgott 42231 as of 9-Sep-2021. (Contributed by AV, 4-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tgblthelfgottOLD ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )

Proof of Theorem tgblthelfgottOLD
Dummy variables 𝑛 𝑑 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hgprmladderOLD 42236 . 2 𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
2 1nn0 11520 . . . . . . . . . . . 12 1 ∈ ℕ0
3 1nn 11243 . . . . . . . . . . . 12 1 ∈ ℕ
42, 3decnncl 11730 . . . . . . . . . . 11 11 ∈ ℕ
54nnzi 11613 . . . . . . . . . 10 11 ∈ ℤ
6 8nn0 11527 . . . . . . . . . . . . 13 8 ∈ ℕ0
7 8nn 11403 . . . . . . . . . . . . 13 8 ∈ ℕ
86, 7decnncl 11730 . . . . . . . . . . . 12 88 ∈ ℕ
9 10nnOLD 11405 . . . . . . . . . . . . 13 10 ∈ ℕ
10 2nn0 11521 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
11 9nn 11404 . . . . . . . . . . . . . . 15 9 ∈ ℕ
1210, 11decnncl 11730 . . . . . . . . . . . . . 14 29 ∈ ℕ
1312nnnn0i 11512 . . . . . . . . . . . . 13 29 ∈ ℕ0
14 nnexpcl 13087 . . . . . . . . . . . . 13 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
159, 13, 14mp2an 710 . . . . . . . . . . . 12 (10↑29) ∈ ℕ
168, 15nnmulcli 11256 . . . . . . . . . . 11 (88 · (10↑29)) ∈ ℕ
1716nnzi 11613 . . . . . . . . . 10 (88 · (10↑29)) ∈ ℤ
18 1re 10251 . . . . . . . . . . . . 13 1 ∈ ℝ
198nnrei 11241 . . . . . . . . . . . . 13 88 ∈ ℝ
2018, 19pm3.2i 470 . . . . . . . . . . . 12 (1 ∈ ℝ ∧ 88 ∈ ℝ)
21 0le1 10763 . . . . . . . . . . . . 13 0 ≤ 1
22 1lt10OLD 11450 . . . . . . . . . . . . . 14 1 < 10
237, 6, 2, 22decltiOLD 11760 . . . . . . . . . . . . 13 1 < 88
2421, 23pm3.2i 470 . . . . . . . . . . . 12 (0 ≤ 1 ∧ 1 < 88)
25 nnexpcl 13087 . . . . . . . . . . . . . . 15 ((10 ∈ ℕ ∧ 1 ∈ ℕ0) → (10↑1) ∈ ℕ)
269, 2, 25mp2an 710 . . . . . . . . . . . . . 14 (10↑1) ∈ ℕ
2726nnrei 11241 . . . . . . . . . . . . 13 (10↑1) ∈ ℝ
2815nnrei 11241 . . . . . . . . . . . . 13 (10↑29) ∈ ℝ
2927, 28pm3.2i 470 . . . . . . . . . . . 12 ((10↑1) ∈ ℝ ∧ (10↑29) ∈ ℝ)
30 0re 10252 . . . . . . . . . . . . . . 15 0 ∈ ℝ
31 10reOLD 11321 . . . . . . . . . . . . . . 15 10 ∈ ℝ
32 10posOLD 11335 . . . . . . . . . . . . . . 15 0 < 10
3330, 31, 32ltleii 10372 . . . . . . . . . . . . . 14 0 ≤ 10
349nncni 11242 . . . . . . . . . . . . . . 15 10 ∈ ℂ
35 exp1 13080 . . . . . . . . . . . . . . 15 (10 ∈ ℂ → (10↑1) = 10)
3634, 35ax-mp 5 . . . . . . . . . . . . . 14 (10↑1) = 10
3733, 36breqtrri 4831 . . . . . . . . . . . . 13 0 ≤ (10↑1)
38 1z 11619 . . . . . . . . . . . . . . 15 1 ∈ ℤ
3912nnzi 11613 . . . . . . . . . . . . . . 15 29 ∈ ℤ
4031, 38, 393pm3.2i 1424 . . . . . . . . . . . . . 14 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 29 ∈ ℤ)
41 2nn 11397 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
42 9nn0 11528 . . . . . . . . . . . . . . . 16 9 ∈ ℕ0
4341, 42, 2, 22decltiOLD 11760 . . . . . . . . . . . . . . 15 1 < 29
4422, 43pm3.2i 470 . . . . . . . . . . . . . 14 (1 < 10 ∧ 1 < 29)
45 ltexp2a 13126 . . . . . . . . . . . . . 14 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 29 ∈ ℤ) ∧ (1 < 10 ∧ 1 < 29)) → (10↑1) < (10↑29))
4640, 44, 45mp2an 710 . . . . . . . . . . . . 13 (10↑1) < (10↑29)
4737, 46pm3.2i 470 . . . . . . . . . . . 12 (0 ≤ (10↑1) ∧ (10↑1) < (10↑29))
48 ltmul12a 11091 . . . . . . . . . . . 12 ((((1 ∈ ℝ ∧ 88 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 88)) ∧ (((10↑1) ∈ ℝ ∧ (10↑29) ∈ ℝ) ∧ (0 ≤ (10↑1) ∧ (10↑1) < (10↑29)))) → (1 · (10↑1)) < (88 · (10↑29)))
4920, 24, 29, 47, 48mp4an 711 . . . . . . . . . . 11 (1 · (10↑1)) < (88 · (10↑29))
5026nnzi 11613 . . . . . . . . . . . . . 14 (10↑1) ∈ ℤ
51 zmulcl 11638 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (10↑1) ∈ ℤ) → (1 · (10↑1)) ∈ ℤ)
5238, 50, 51mp2an 710 . . . . . . . . . . . . 13 (1 · (10↑1)) ∈ ℤ
53 zltp1le 11639 . . . . . . . . . . . . 13 (((1 · (10↑1)) ∈ ℤ ∧ (88 · (10↑29)) ∈ ℤ) → ((1 · (10↑1)) < (88 · (10↑29)) ↔ ((1 · (10↑1)) + 1) ≤ (88 · (10↑29))))
5452, 17, 53mp2an 710 . . . . . . . . . . . 12 ((1 · (10↑1)) < (88 · (10↑29)) ↔ ((1 · (10↑1)) + 1) ≤ (88 · (10↑29)))
55 1t10e1p1e11OLD 41848 . . . . . . . . . . . . . 14 11 = ((1 · (10↑1)) + 1)
5655eqcomi 2769 . . . . . . . . . . . . 13 ((1 · (10↑1)) + 1) = 11
5756breq1i 4811 . . . . . . . . . . . 12 (((1 · (10↑1)) + 1) ≤ (88 · (10↑29)) ↔ 11 ≤ (88 · (10↑29)))
5854, 57bitri 264 . . . . . . . . . . 11 ((1 · (10↑1)) < (88 · (10↑29)) ↔ 11 ≤ (88 · (10↑29)))
5949, 58mpbi 220 . . . . . . . . . 10 11 ≤ (88 · (10↑29))
60 eluz2 11905 . . . . . . . . . 10 ((88 · (10↑29)) ∈ (ℤ11) ↔ (11 ∈ ℤ ∧ (88 · (10↑29)) ∈ ℤ ∧ 11 ≤ (88 · (10↑29))))
615, 17, 59, 60mpbir3an 1427 . . . . . . . . 9 (88 · (10↑29)) ∈ (ℤ11)
6261a1i 11 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (88 · (10↑29)) ∈ (ℤ11))
63 4nn 11399 . . . . . . . . . . . 12 4 ∈ ℕ
642, 7decnncl 11730 . . . . . . . . . . . . . 14 18 ∈ ℕ
6564nnnn0i 11512 . . . . . . . . . . . . 13 18 ∈ ℕ0
66 nnexpcl 13087 . . . . . . . . . . . . 13 ((10 ∈ ℕ ∧ 18 ∈ ℕ0) → (10↑18) ∈ ℕ)
679, 65, 66mp2an 710 . . . . . . . . . . . 12 (10↑18) ∈ ℕ
6863, 67nnmulcli 11256 . . . . . . . . . . 11 (4 · (10↑18)) ∈ ℕ
6968nnzi 11613 . . . . . . . . . 10 (4 · (10↑18)) ∈ ℤ
70 4re 11309 . . . . . . . . . . . . 13 4 ∈ ℝ
7118, 70pm3.2i 470 . . . . . . . . . . . 12 (1 ∈ ℝ ∧ 4 ∈ ℝ)
72 1lt4 11411 . . . . . . . . . . . . 13 1 < 4
7321, 72pm3.2i 470 . . . . . . . . . . . 12 (0 ≤ 1 ∧ 1 < 4)
7467nnrei 11241 . . . . . . . . . . . . 13 (10↑18) ∈ ℝ
7527, 74pm3.2i 470 . . . . . . . . . . . 12 ((10↑1) ∈ ℝ ∧ (10↑18) ∈ ℝ)
7664nnzi 11613 . . . . . . . . . . . . . . 15 18 ∈ ℤ
7731, 38, 763pm3.2i 1424 . . . . . . . . . . . . . 14 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 18 ∈ ℤ)
783, 6, 2, 22decltiOLD 11760 . . . . . . . . . . . . . . 15 1 < 18
7922, 78pm3.2i 470 . . . . . . . . . . . . . 14 (1 < 10 ∧ 1 < 18)
80 ltexp2a 13126 . . . . . . . . . . . . . 14 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 18 ∈ ℤ) ∧ (1 < 10 ∧ 1 < 18)) → (10↑1) < (10↑18))
8177, 79, 80mp2an 710 . . . . . . . . . . . . 13 (10↑1) < (10↑18)
8237, 81pm3.2i 470 . . . . . . . . . . . 12 (0 ≤ (10↑1) ∧ (10↑1) < (10↑18))
83 ltmul12a 11091 . . . . . . . . . . . 12 ((((1 ∈ ℝ ∧ 4 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 4)) ∧ (((10↑1) ∈ ℝ ∧ (10↑18) ∈ ℝ) ∧ (0 ≤ (10↑1) ∧ (10↑1) < (10↑18)))) → (1 · (10↑1)) < (4 · (10↑18)))
8471, 73, 75, 82, 83mp4an 711 . . . . . . . . . . 11 (1 · (10↑1)) < (4 · (10↑18))
85 4z 11623 . . . . . . . . . . . . . 14 4 ∈ ℤ
8667nnzi 11613 . . . . . . . . . . . . . 14 (10↑18) ∈ ℤ
87 zmulcl 11638 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ (10↑18) ∈ ℤ) → (4 · (10↑18)) ∈ ℤ)
8885, 86, 87mp2an 710 . . . . . . . . . . . . 13 (4 · (10↑18)) ∈ ℤ
89 zltp1le 11639 . . . . . . . . . . . . 13 (((1 · (10↑1)) ∈ ℤ ∧ (4 · (10↑18)) ∈ ℤ) → ((1 · (10↑1)) < (4 · (10↑18)) ↔ ((1 · (10↑1)) + 1) ≤ (4 · (10↑18))))
9052, 88, 89mp2an 710 . . . . . . . . . . . 12 ((1 · (10↑1)) < (4 · (10↑18)) ↔ ((1 · (10↑1)) + 1) ≤ (4 · (10↑18)))
9156breq1i 4811 . . . . . . . . . . . 12 (((1 · (10↑1)) + 1) ≤ (4 · (10↑18)) ↔ 11 ≤ (4 · (10↑18)))
9290, 91bitri 264 . . . . . . . . . . 11 ((1 · (10↑1)) < (4 · (10↑18)) ↔ 11 ≤ (4 · (10↑18)))
9384, 92mpbi 220 . . . . . . . . . 10 11 ≤ (4 · (10↑18))
94 eluz2 11905 . . . . . . . . . 10 ((4 · (10↑18)) ∈ (ℤ11) ↔ (11 ∈ ℤ ∧ (4 · (10↑18)) ∈ ℤ ∧ 11 ≤ (4 · (10↑18))))
955, 69, 93, 94mpbir3an 1427 . . . . . . . . 9 (4 · (10↑18)) ∈ (ℤ11)
9695a1i 11 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (4 · (10↑18)) ∈ (ℤ11))
97 simpl 474 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ Even )
98 simprl 811 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 4 < 𝑛)
99 evenz 42071 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
10099zred 11694 . . . . . . . . . . . . . . 15 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
10168nnrei 11241 . . . . . . . . . . . . . . 15 (4 · (10↑18)) ∈ ℝ
102 ltle 10338 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ (4 · (10↑18)) ∈ ℝ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
103100, 101, 102sylancl 697 . . . . . . . . . . . . . 14 (𝑛 ∈ Even → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
104103a1d 25 . . . . . . . . . . . . 13 (𝑛 ∈ Even → (4 < 𝑛 → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18)))))
105104imp32 448 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ≤ (4 · (10↑18)))
106 ax-bgbltosilvaOLD 42234 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 ≤ (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )
10797, 98, 105, 106syl3anc 1477 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ GoldbachEven )
108107ex 449 . . . . . . . . . 10 (𝑛 ∈ Even → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
109108a1i 11 . . . . . . . . 9 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
110109ralrimiv 3103 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
111 simpl 474 . . . . . . . . 9 ((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) → 𝑑 ∈ (ℤ‘3))
112111ad2antrr 764 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → 𝑑 ∈ (ℤ‘3))
113 simpr 479 . . . . . . . . 9 ((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) → 𝑓 ∈ (RePart‘𝑑))
114113ad2antrr 764 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → 𝑓 ∈ (RePart‘𝑑))
115 simpr 479 . . . . . . . . 9 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
116115ad2antlr 765 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
117 simpl1 1228 . . . . . . . . 9 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (𝑓‘0) = 7)
118117ad2antlr 765 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑓‘0) = 7)
119 simpl2 1230 . . . . . . . . 9 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (𝑓‘1) = 13)
120119ad2antlr 765 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑓‘1) = 13)
1216, 11decnncl 11730 . . . . . . . . . . . . . . 15 89 ∈ ℕ
122121nnrei 11241 . . . . . . . . . . . . . 14 89 ∈ ℝ
12315nngt0i 11266 . . . . . . . . . . . . . . 15 0 < (10↑29)
12428, 123pm3.2i 470 . . . . . . . . . . . . . 14 ((10↑29) ∈ ℝ ∧ 0 < (10↑29))
12519, 122, 1243pm3.2i 1424 . . . . . . . . . . . . 13 (88 ∈ ℝ ∧ 89 ∈ ℝ ∧ ((10↑29) ∈ ℝ ∧ 0 < (10↑29)))
126 8lt9 11434 . . . . . . . . . . . . . 14 8 < 9
1276, 6, 11, 126declt 11742 . . . . . . . . . . . . 13 88 < 89
128 ltmul1a 11084 . . . . . . . . . . . . 13 (((88 ∈ ℝ ∧ 89 ∈ ℝ ∧ ((10↑29) ∈ ℝ ∧ 0 < (10↑29))) ∧ 88 < 89) → (88 · (10↑29)) < (89 · (10↑29)))
129125, 127, 128mp2an 710 . . . . . . . . . . . 12 (88 · (10↑29)) < (89 · (10↑29))
130 breq2 4808 . . . . . . . . . . . 12 ((𝑓𝑑) = (89 · (10↑29)) → ((88 · (10↑29)) < (𝑓𝑑) ↔ (88 · (10↑29)) < (89 · (10↑29))))
131129, 130mpbiri 248 . . . . . . . . . . 11 ((𝑓𝑑) = (89 · (10↑29)) → (88 · (10↑29)) < (𝑓𝑑))
1321313ad2ant3 1130 . . . . . . . . . 10 (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) → (88 · (10↑29)) < (𝑓𝑑))
133132adantr 472 . . . . . . . . 9 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (88 · (10↑29)) < (𝑓𝑑))
134133ad2antlr 765 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (88 · (10↑29)) < (𝑓𝑑))
135121, 15nnmulcli 11256 . . . . . . . . . . . . 13 (89 · (10↑29)) ∈ ℕ
136135nnrei 11241 . . . . . . . . . . . 12 (89 · (10↑29)) ∈ ℝ
137 eleq1 2827 . . . . . . . . . . . 12 ((𝑓𝑑) = (89 · (10↑29)) → ((𝑓𝑑) ∈ ℝ ↔ (89 · (10↑29)) ∈ ℝ))
138136, 137mpbiri 248 . . . . . . . . . . 11 ((𝑓𝑑) = (89 · (10↑29)) → (𝑓𝑑) ∈ ℝ)
1391383ad2ant3 1130 . . . . . . . . . 10 (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) → (𝑓𝑑) ∈ ℝ)
140139adantr 472 . . . . . . . . 9 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (𝑓𝑑) ∈ ℝ)
141140ad2antlr 765 . . . . . . . 8 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑓𝑑) ∈ ℝ)
14262, 96, 110, 112, 114, 116, 118, 120, 134, 141bgoldbtbnd 42225 . . . . . . 7 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
143142exp31 631 . . . . . 6 ((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) → ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
144143rexlimdva 3169 . . . . 5 (𝑑 ∈ (ℤ‘3) → (∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
145144imp 444 . . . 4 ((𝑑 ∈ (ℤ‘3) ∧ ∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
146145rexlimiva 3166 . . 3 (∃𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
147 breq2 4808 . . . . . . . 8 (𝑛 = 𝑁 → (7 < 𝑛 ↔ 7 < 𝑁))
148 breq1 4807 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 < (88 · (10↑29)) ↔ 𝑁 < (88 · (10↑29))))
149147, 148anbi12d 749 . . . . . . 7 (𝑛 = 𝑁 → ((7 < 𝑛𝑛 < (88 · (10↑29))) ↔ (7 < 𝑁𝑁 < (88 · (10↑29)))))
150 eleq1 2827 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
151149, 150imbi12d 333 . . . . . 6 (𝑛 = 𝑁 → (((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) ↔ ((7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )))
152151rspcv 3445 . . . . 5 (𝑁 ∈ Odd → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) → ((7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )))
153152com23 86 . . . 4 (𝑁 ∈ Odd → ((7 < 𝑁𝑁 < (88 · (10↑29))) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd )))
1541533impib 1109 . . 3 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
155146, 154sylcom 30 . 2 (∃𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd ))
1561, 155ax-mp 5 1 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cdif 3712  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478  cn 11232  2c2 11282  3c3 11283  4c4 11284  7c7 11287  8c8 11288  9c9 11289  10c10 11290  0cn0 11504  cz 11589  cdc 11705  cuz 11899  ..^cfzo 12679  cexp 13074  cprime 15607  RePartciccp 41877   Even ceven 42065   Odd codd 42066   GoldbachEven cgbe 42161   GoldbachOdd cgbo 42163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-bgbltosilvaOLD 42234  ax-hgprmladderOLD 42236
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-10OLD 11299  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-prm 15608  df-iccp 41878  df-even 42067  df-odd 42068  df-gbe 42164  df-gbo 42166
This theorem is referenced by:  tgoldbachltOLD  42238
  Copyright terms: Public domain W3C validator