Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem7 Structured version   Visualization version   GIF version

Theorem tfrlem7 7178
 Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem7 Fun recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem7
Dummy variables 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem6 7177 . 2 Rel recs(𝐹)
31recsfval 7176 . . . . . . . . 9 recs(𝐹) = 𝐴
43eleq2i 2575 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐴)
5 eluni 4231 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
64, 5bitri 259 . . . . . . 7 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
73eleq2i 2575 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐴)
8 eluni 4231 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐴 ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
97, 8bitri 259 . . . . . . 7 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
106, 9anbi12i 720 . . . . . 6 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
11 eeanv 2126 . . . . . 6 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
1210, 11bitr4i 262 . . . . 5 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)))
13 df-br 4435 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
14 df-br 4435 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1513, 14anbi12i 720 . . . . . . . 8 ((𝑥𝑔𝑢𝑥𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ))
161tfrlem5 7175 . . . . . . . . 9 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1716impcom 439 . . . . . . . 8 (((𝑥𝑔𝑢𝑥𝑣) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1815, 17sylanbr 483 . . . . . . 7 (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1918an4s 855 . . . . . 6 (((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2019exlimivv 1809 . . . . 5 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2112, 20sylbi 202 . . . 4 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2221ax-gen 1698 . . 3 𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2322gen2 1699 . 2 𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
24 dffun4 5645 . 2 (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)))
252, 23, 24mpbir2an 947 1 Fun recs(𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 378  ∀wal 1466   = wceq 1468  ∃wex 1692   ∈ wcel 1937  {cab 2491  ∀wral 2791  ∃wrex 2792  ⟨cop 4001  ∪ cuni 4228   class class class wbr 4434   ↾ cres 4882  Rel wrel 4885  Oncon0 5474  Fun wfun 5627   Fn wfn 5628  ‘cfv 5633  recscrecs 7166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659 This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-iota 5597  df-fun 5635  df-fn 5636  df-fv 5641  df-wrecs 7105  df-recs 7167 This theorem is referenced by:  tfrlem9  7180  tfrlem9a  7181  tfrlem10  7182  tfrlem14  7186  tfrlem16  7188  tfr1a  7189  tfr1  7192
 Copyright terms: Public domain W3C validator