MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem6 Structured version   Visualization version   GIF version

Theorem tfrlem6 7647
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem6 Rel recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 5397 . . 3 (Rel 𝐴 ↔ ∀𝑔𝐴 Rel 𝑔)
2 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
32tfrlem4 7644 . . . 4 (𝑔𝐴 → Fun 𝑔)
4 funrel 6066 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 17 . . 3 (𝑔𝐴 → Rel 𝑔)
61, 5mprgbir 3065 . 2 Rel 𝐴
72recsfval 7646 . . 3 recs(𝐹) = 𝐴
87releqi 5359 . 2 (Rel recs(𝐹) ↔ Rel 𝐴)
96, 8mpbir 221 1 Rel recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wcel 2139  {cab 2746  wral 3050  wrex 3051   cuni 4588  cres 5268  Rel wrel 5271  Oncon0 5884  Fun wfun 6043   Fn wfn 6044  cfv 6049  recscrecs 7636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-tr 4905  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057  df-wrecs 7576  df-recs 7637
This theorem is referenced by:  tfrlem7  7648  tfrlem11  7653  tfrlem15  7657  tfrlem16  7658
  Copyright terms: Public domain W3C validator