MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem12 Structured version   Visualization version   GIF version

Theorem tfrlem12 7184
Description: Lemma for transfinite recursion. Show 𝐶 is an acceptable function. (Contributed by NM, 15-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem12 (recs(𝐹) ∈ V → 𝐶𝐴)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 7179 . . . . 5 Ord dom recs(𝐹)
32a1i 11 . . . 4 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
4 dmexg 6801 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
5 elon2 5485 . . . 4 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
63, 4, 5sylanbrc 686 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
7 suceloni 6717 . . . 4 (dom recs(𝐹) ∈ On → suc dom recs(𝐹) ∈ On)
8 tfrlem.3 . . . . 5 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
91, 8tfrlem10 7182 . . . 4 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
101, 8tfrlem11 7183 . . . . . 6 (dom recs(𝐹) ∈ On → (𝑧 ∈ suc dom recs(𝐹) → (𝐶𝑧) = (𝐹‘(𝐶𝑧))))
1110ralrimiv 2843 . . . . 5 (dom recs(𝐹) ∈ On → ∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)))
12 fveq2 5927 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
13 reseq2 5149 . . . . . . . 8 (𝑧 = 𝑦 → (𝐶𝑧) = (𝐶𝑦))
1413fveq2d 5931 . . . . . . 7 (𝑧 = 𝑦 → (𝐹‘(𝐶𝑧)) = (𝐹‘(𝐶𝑦)))
1512, 14eqeq12d 2520 . . . . . 6 (𝑧 = 𝑦 → ((𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
1615cbvralv 3040 . . . . 5 (∀𝑧 ∈ suc dom recs(𝐹)(𝐶𝑧) = (𝐹‘(𝐶𝑧)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
1711, 16sylib 203 . . . 4 (dom recs(𝐹) ∈ On → ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))
18 fneq2 5720 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (𝐶 Fn 𝑥𝐶 Fn suc dom recs(𝐹)))
19 raleq 3008 . . . . . 6 (𝑥 = suc dom recs(𝐹) → (∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)) ↔ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦))))
2018, 19anbi12d 734 . . . . 5 (𝑥 = suc dom recs(𝐹) → ((𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))) ↔ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
2120rspcev 3171 . . . 4 ((suc dom recs(𝐹) ∈ On ∧ (𝐶 Fn suc dom recs(𝐹) ∧ ∀𝑦 ∈ suc dom recs(𝐹)(𝐶𝑦) = (𝐹‘(𝐶𝑦)))) → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
227, 9, 17, 21syl12anc 1306 . . 3 (dom recs(𝐹) ∈ On → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
236, 22syl 17 . 2 (recs(𝐹) ∈ V → ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
24 snex 4682 . . . . 5 {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V
25 unexg 6669 . . . . 5 ((recs(𝐹) ∈ V ∧ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} ∈ V) → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
2624, 25mpan2 694 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ V)
278, 26syl5eqel 2587 . . 3 (recs(𝐹) ∈ V → 𝐶 ∈ V)
28 fneq1 5719 . . . . . 6 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
29 fveq1 5926 . . . . . . . 8 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
30 reseq1 5148 . . . . . . . . 9 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
3130fveq2d 5931 . . . . . . . 8 (𝑓 = 𝐶 → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐶𝑦)))
3229, 31eqeq12d 2520 . . . . . . 7 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3332ralbidv 2864 . . . . . 6 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦))))
3428, 33anbi12d 734 . . . . 5 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3534rexbidv 2927 . . . 4 (𝑓 = 𝐶 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3635, 1elab2g 3211 . . 3 (𝐶 ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3727, 36syl 17 . 2 (recs(𝐹) ∈ V → (𝐶𝐴 ↔ ∃𝑥 ∈ On (𝐶 Fn 𝑥 ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐹‘(𝐶𝑦)))))
3823, 37mpbird 242 1 (recs(𝐹) ∈ V → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 191  wa 378   = wceq 1468  wcel 1937  {cab 2491  wral 2791  wrex 2792  Vcvv 3066  cun 3424  {csn 3995  cop 4001  dom cdm 4880  cres 4882  Ord word 5473  Oncon0 5474  suc csuc 5476   Fn wfn 5628  cfv 5633  recscrecs 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-fv 5641  df-wrecs 7105  df-recs 7167
This theorem is referenced by:  tfrlem13  7185
  Copyright terms: Public domain W3C validator