![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem10 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 7532, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlem.3 | ⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
Ref | Expression |
---|---|
tfrlem10 | ⊢ (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6239 | . . . . . 6 ⊢ (𝐹‘recs(𝐹)) ∈ V | |
2 | funsng 5975 | . . . . . 6 ⊢ ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
3 | 1, 2 | mpan2 707 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
4 | tfrlem.1 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
5 | 4 | tfrlem7 7524 | . . . . 5 ⊢ Fun recs(𝐹) |
6 | 3, 5 | jctil 559 | . . . 4 ⊢ (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
7 | 1 | dmsnop 5645 | . . . . . 6 ⊢ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉} = {dom recs(𝐹)} |
8 | 7 | ineq2i 3844 | . . . . 5 ⊢ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∩ {dom recs(𝐹)}) |
9 | 4 | tfrlem8 7525 | . . . . . 6 ⊢ Ord dom recs(𝐹) |
10 | orddisj 5800 | . . . . . 6 ⊢ (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅ |
12 | 8, 11 | eqtri 2673 | . . . 4 ⊢ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = ∅ |
13 | funun 5970 | . . . 4 ⊢ (((Fun recs(𝐹) ∧ Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∧ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = ∅) → Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) | |
14 | 6, 12, 13 | sylancl 695 | . . 3 ⊢ (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
15 | 7 | uneq2i 3797 | . . . 4 ⊢ (dom recs(𝐹) ∪ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∪ {dom recs(𝐹)}) |
16 | dmun 5363 | . . . 4 ⊢ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∪ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
17 | df-suc 5767 | . . . 4 ⊢ suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)}) | |
18 | 15, 16, 17 | 3eqtr4i 2683 | . . 3 ⊢ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹) |
19 | df-fn 5929 | . . 3 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∧ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹))) | |
20 | 14, 18, 19 | sylanblrc 698 | . 2 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
21 | tfrlem.3 | . . 3 ⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
22 | 21 | fneq1i 6023 | . 2 ⊢ (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
23 | 20, 22 | sylibr 224 | 1 ⊢ (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ∃wrex 2942 Vcvv 3231 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 {csn 4210 〈cop 4216 dom cdm 5143 ↾ cres 5145 Ord word 5760 Oncon0 5761 suc csuc 5763 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 recscrecs 7512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-wrecs 7452 df-recs 7513 |
This theorem is referenced by: tfrlem11 7529 tfrlem12 7530 tfrlem13 7531 |
Copyright terms: Public domain | W3C validator |