Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem1 Structured version   Visualization version   GIF version

Theorem tfrlem1 7418
 Description: A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlem1.1 (𝜑𝐴 ∈ On)
tfrlem1.2 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
tfrlem1.3 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
tfrlem1.4 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
tfrlem1.5 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
Assertion
Ref Expression
tfrlem1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlem1
Dummy variables 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3608 . 2 𝐴𝐴
2 tfrlem1.1 . . 3 (𝜑𝐴 ∈ On)
3 sseq1 3610 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
4 raleq 3132 . . . . . 6 (𝑦 = 𝑧 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
53, 4imbi12d 334 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
65imbi2d 330 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))))
7 sseq1 3610 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
8 raleq 3132 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
97, 8imbi12d 334 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
109imbi2d 330 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))))
11 r19.21v 2959 . . . . 5 (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
12 tfrlem1.2 . . . . . . . . . . . . . . . . 17 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312ad4antr 767 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1413simpld 475 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐹)
15 funfn 5879 . . . . . . . . . . . . . . 15 (Fun 𝐹𝐹 Fn dom 𝐹)
1614, 15sylib 208 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐹 Fn dom 𝐹)
17 eloni 5695 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
1817ad3antlr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → Ord 𝑦)
19 ordelss 5701 . . . . . . . . . . . . . . . . 17 ((Ord 𝑦𝑤𝑦) → 𝑤𝑦)
2018, 19sylan 488 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝑦)
21 simplr 791 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑦𝐴)
2220, 21sstrd 3598 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
2313simprd 479 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐹)
2422, 23sstrd 3598 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐹)
25 fnssres 5964 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹𝑤 ⊆ dom 𝐹) → (𝐹𝑤) Fn 𝑤)
2616, 24, 25syl2anc 692 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) Fn 𝑤)
27 tfrlem1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
2827ad4antr 767 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐺𝐴 ⊆ dom 𝐺))
2928simpld 475 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐺)
30 funfn 5879 . . . . . . . . . . . . . . 15 (Fun 𝐺𝐺 Fn dom 𝐺)
3129, 30sylib 208 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐺 Fn dom 𝐺)
3228simprd 479 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐺)
3322, 32sstrd 3598 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐺)
34 fnssres 5964 . . . . . . . . . . . . . 14 ((𝐺 Fn dom 𝐺𝑤 ⊆ dom 𝐺) → (𝐺𝑤) Fn 𝑤)
3531, 33, 34syl2anc 692 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) Fn 𝑤)
36 simpr 477 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑢𝑤)
37 simplr 791 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝑦)
38 simp-4r 806 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
3922adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝐴)
40 sseq1 3610 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
41 raleq 3132 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4240, 41imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → ((𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
4342rspcv 3296 . . . . . . . . . . . . . . . 16 (𝑤𝑦 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
4437, 38, 39, 43syl3c 66 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))
45 fveq2 6150 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
46 fveq2 6150 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝐺𝑥) = (𝐺𝑢))
4745, 46eqeq12d 2641 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑢) = (𝐺𝑢)))
4847rspcv 3296 . . . . . . . . . . . . . . 15 (𝑢𝑤 → (∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥) → (𝐹𝑢) = (𝐺𝑢)))
4936, 44, 48sylc 65 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝐹𝑢) = (𝐺𝑢))
50 fvres 6165 . . . . . . . . . . . . . . 15 (𝑢𝑤 → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
5150adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
52 fvres 6165 . . . . . . . . . . . . . . 15 (𝑢𝑤 → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5352adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5449, 51, 533eqtr4d 2670 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = ((𝐺𝑤)‘𝑢))
5526, 35, 54eqfnfvd 6271 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
5655fveq2d 6154 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐵‘(𝐹𝑤)) = (𝐵‘(𝐺𝑤)))
57 simpr 477 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦𝐴)
5857sselda 3588 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
59 tfrlem1.4 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
6059ad4antr 767 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
61 fveq2 6150 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
62 reseq2 5355 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
6362fveq2d 6154 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐵‘(𝐹𝑥)) = (𝐵‘(𝐹𝑤)))
6461, 63eqeq12d 2641 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐵‘(𝐹𝑥)) ↔ (𝐹𝑤) = (𝐵‘(𝐹𝑤))))
6564rspcva 3298 . . . . . . . . . . . 12 ((𝑤𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥))) → (𝐹𝑤) = (𝐵‘(𝐹𝑤)))
6658, 60, 65syl2anc 692 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐵‘(𝐹𝑤)))
67 tfrlem1.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
6867ad4antr 767 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
69 fveq2 6150 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
70 reseq2 5355 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
7170fveq2d 6154 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐵‘(𝐺𝑥)) = (𝐵‘(𝐺𝑤)))
7269, 71eqeq12d 2641 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐺𝑥) = (𝐵‘(𝐺𝑥)) ↔ (𝐺𝑤) = (𝐵‘(𝐺𝑤))))
7372rspcva 3298 . . . . . . . . . . . 12 ((𝑤𝐴 ∧ ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥))) → (𝐺𝑤) = (𝐵‘(𝐺𝑤)))
7458, 68, 73syl2anc 692 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) = (𝐵‘(𝐺𝑤)))
7556, 66, 743eqtr4d 2670 . . . . . . . . . 10 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
7675ralrimiva 2965 . . . . . . . . 9 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7761, 69eqeq12d 2641 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑤) = (𝐺𝑤)))
7877cbvralv 3164 . . . . . . . . 9 (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7976, 78sylibr 224 . . . . . . . 8 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))
8079exp31 629 . . . . . . 7 ((𝜑𝑦 ∈ On) → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
8180expcom 451 . . . . . 6 (𝑦 ∈ On → (𝜑 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8281a2d 29 . . . . 5 (𝑦 ∈ On → ((𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8311, 82syl5bi 232 . . . 4 (𝑦 ∈ On → (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
846, 10, 83tfis3 7005 . . 3 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
852, 84mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
861, 85mpi 20 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1992  ∀wral 2912   ⊆ wss 3560  dom cdm 5079   ↾ cres 5081  Ord word 5684  Oncon0 5685  Fun wfun 5844   Fn wfn 5845  ‘cfv 5850 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5688  df-on 5689  df-iota 5813  df-fun 5852  df-fn 5853  df-fv 5858 This theorem is referenced by:  tfrlem5  7422
 Copyright terms: Public domain W3C validator