![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr3ALT | Structured version Visualization version GIF version |
Description: Alternate proof of tfr3 7665 using well-founded recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tfrALT.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr3ALT | ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predon 7157 | . . . . . . 7 ⊢ (𝑥 ∈ On → Pred( E , On, 𝑥) = 𝑥) | |
2 | 1 | reseq2d 5551 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝐵 ↾ Pred( E , On, 𝑥)) = (𝐵 ↾ 𝑥)) |
3 | 2 | fveq2d 6357 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) = (𝐺‘(𝐵 ↾ 𝑥))) |
4 | 3 | eqeq2d 2770 | . . . 4 ⊢ (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)))) |
5 | 4 | ralbiia 3117 | . . 3 ⊢ (∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥))) ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) |
6 | epweon 7149 | . . . 4 ⊢ E We On | |
7 | epse 5249 | . . . 4 ⊢ E Se On | |
8 | tfrALT.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
9 | df-recs 7638 | . . . . 5 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
10 | 8, 9 | eqtri 2782 | . . . 4 ⊢ 𝐹 = wrecs( E , On, 𝐺) |
11 | 6, 7, 10 | wfr3 7605 | . . 3 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ Pred( E , On, 𝑥)))) → 𝐹 = 𝐵) |
12 | 5, 11 | sylan2br 494 | . 2 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐹 = 𝐵) |
13 | 12 | eqcomd 2766 | 1 ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 E cep 5178 ↾ cres 5268 Predcpred 5840 Oncon0 5884 Fn wfn 6044 ‘cfv 6049 wrecscwrecs 7576 recscrecs 7637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-wrecs 7577 df-recs 7638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |