MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr3 Structured version   Visualization version   GIF version

Theorem tfr3 7194
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47. Finally, we show that 𝐹 is unique. We do this by showing that any class 𝐵 with the same properties of 𝐹 that we showed in parts 1 and 2 is identical to 𝐹. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺

Proof of Theorem tfr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1792 . . . 4 𝑥 𝐵 Fn On
2 nfra1 2820 . . . 4 𝑥𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))
31, 2nfan 2064 . . 3 𝑥(𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)))
4 nfv 1792 . . . . . 6 𝑥(𝐵𝑦) = (𝐹𝑦)
53, 4nfim 2056 . . . . 5 𝑥((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦))
6 fveq2 5927 . . . . . . 7 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
7 fveq2 5927 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
86, 7eqeq12d 2520 . . . . . 6 (𝑥 = 𝑦 → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐵𝑦) = (𝐹𝑦)))
98imbi2d 325 . . . . 5 (𝑥 = 𝑦 → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦))))
10 r19.21v 2838 . . . . . 6 (∀𝑦𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
11 rsp 2808 . . . . . . . . . 10 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))))
12 onss 6694 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → 𝑥 ⊆ On)
13 tfr.1 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = recs(𝐺)
1413tfr1 7192 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn On
15 fvreseq 6051 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 Fn On ∧ 𝐹 Fn On) ∧ 𝑥 ⊆ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
1614, 15mpanl2 704 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Fn On ∧ 𝑥 ⊆ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
17 fveq2 5927 . . . . . . . . . . . . . . . . . . . 20 ((𝐵𝑥) = (𝐹𝑥) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
1816, 17syl6bir 239 . . . . . . . . . . . . . . . . . . 19 ((𝐵 Fn On ∧ 𝑥 ⊆ On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
1912, 18sylan2 484 . . . . . . . . . . . . . . . . . 18 ((𝐵 Fn On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2019ancoms 462 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2120imp 438 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
2221adantr 474 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
2313tfr2 7193 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
2423jctr 557 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
25 jcab 893 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥)))) ↔ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
2624, 25sylibr 219 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
27 eqeq12 2518 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥))) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2826, 27syl6 34 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))))
2928imp 438 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
3029adantl 475 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
3122, 30mpbird 242 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → (𝐵𝑥) = (𝐹𝑥))
3231exp43 629 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵𝑥) = (𝐹𝑥)))))
3332com4t 89 . . . . . . . . . . . 12 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3433exp4a 623 . . . . . . . . . . 11 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥))))))
3534pm2.43d 50 . . . . . . . . . 10 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3611, 35syl 17 . . . . . . . . 9 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3736com3l 85 . . . . . . . 8 (𝑥 ∈ On → (𝐵 Fn On → (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3837impd 440 . . . . . . 7 (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥))))
3938a2d 29 . . . . . 6 (𝑥 ∈ On → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥))))
4010, 39syl5bi 227 . . . . 5 (𝑥 ∈ On → (∀𝑦𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥))))
415, 9, 40tfis2f 6759 . . . 4 (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥)))
4241com12 32 . . 3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵𝑥) = (𝐹𝑥)))
433, 42ralrimi 2835 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥))
44 eqfnfv 6043 . . . 4 ((𝐵 Fn On ∧ 𝐹 Fn On) → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)))
4514, 44mpan2 694 . . 3 (𝐵 Fn On → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)))
4645biimpar 495 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)) → 𝐵 = 𝐹)
4743, 46syldan 480 1 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 191  wa 378   = wceq 1468  wcel 1937  wral 2791  wss 3426  cres 4882  Oncon0 5474   Fn wfn 5628  cfv 5633  recscrecs 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-rep 4548  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-wrecs 7105  df-recs 7167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator