MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1a Structured version   Visualization version   GIF version

Theorem tfr1a 7189
Description: A weak version of tfr1 7192 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1a (Fun 𝐹 ∧ Lim dom 𝐹)

Proof of Theorem tfr1a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2505 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 7178 . . 3 Fun recs(𝐺)
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43funeqi 5653 . . 3 (Fun 𝐹 ↔ Fun recs(𝐺))
52, 4mpbir 216 . 2 Fun 𝐹
61tfrlem16 7188 . . 3 Lim dom recs(𝐺)
73dmeqi 5084 . . . 4 dom 𝐹 = dom recs(𝐺)
8 limeq 5486 . . . 4 (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺)))
97, 8ax-mp 5 . . 3 (Lim dom 𝐹 ↔ Lim dom recs(𝐺))
106, 9mpbir 216 . 2 Lim dom 𝐹
115, 10pm3.2i 464 1 (Fun 𝐹 ∧ Lim dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 191  wa 378   = wceq 1468  {cab 2491  wral 2791  wrex 2792  dom cdm 4880  cres 4882  Oncon0 5474  Lim wlim 5475  Fun wfun 5627   Fn wfn 5628  cfv 5633  recscrecs 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-pw 3980  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-lim 5479  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-wrecs 7105  df-recs 7167
This theorem is referenced by:  tfr2b  7191  rdgfun  7211  rdgdmlim  7212  ordtypelem3  8118  ordtypelem4  8119  ordtypelem5  8120  ordtypelem6  8121  ordtypelem7  8122  ordtypelem9  8124
  Copyright terms: Public domain W3C validator