MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoeu1 Structured version   Visualization version   GIF version

Theorem termoeu1 16889
Description: Terminal objects are essentially unique (strong form), i.e. there is a unique isomorphism between two terminal objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
termoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem termoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 termoeu1.b . . 3 (𝜑𝐵 ∈ (TermO‘𝐶))
2 eqid 2760 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2760 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 termoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4istermoi 16875 . . 3 ((𝜑𝐵 ∈ (TermO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
61, 5mpdan 705 . 2 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)))
7 termoeu1.a . . . . 5 (𝜑𝐴 ∈ (TermO‘𝐶))
82, 3, 4istermoi 16875 . . . . 5 ((𝜑𝐴 ∈ (TermO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
97, 8mpdan 705 . . . 4 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)))
10 oveq1 6821 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎(Hom ‘𝐶)𝐵) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2825 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2627 . . . . . . . 8 (𝑎 = 𝐴 → (∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3445 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2760 . . . . . . . . . . . . . 14 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprl 811 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprr 813 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 16657 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2631 . . . . . . . . . . . . . . 15 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq1 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝑏(Hom ‘𝐶)𝐴) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2825 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝐵 → (𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2627 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐵 → (∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3447 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2631 . . . . . . . . . . . . . . . . 17 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 449 . . . . . . . . . . . . . . 15 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 767 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2760 . . . . . . . . . . . . . . . . . . . . 21 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 7, 12termoinv 16888 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
35343exp 1113 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3635adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3736imp31 447 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
382, 30, 31, 32, 33, 14, 37inviso1 16647 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3938ex 449 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4039eximdv 1995 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4140expcom 450 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241exlimiv 2007 . . . . . . . . . . . . . . . 16 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4342com3l 89 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4443impd 446 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4521, 29, 44syl2and 501 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4645imp 444 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
47 simprl 811 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
48 euelss 4057 . . . . . . . . . . . 12 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4919, 46, 47, 48syl3anc 1477 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴 ∈ (Base‘𝐶) ∧ 𝐵 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5049exp42 640 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150com24 95 . . . . . . . . 9 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5251com14 96 . . . . . . . 8 (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5352expd 451 . . . . . . 7 (𝐴 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5413, 53syldc 48 . . . . . 6 (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5554com15 101 . . . . 5 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5655impd 446 . . . 4 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝑏(Hom ‘𝐶)𝐴)) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
579, 56mpd 15 . . 3 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5857impd 446 . 2 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝑎(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
596, 58mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wex 1853  wcel 2139  ∃!weu 2607  wral 3050  wss 3715   class class class wbr 4804  cfv 6049  (class class class)co 6814  Basecbs 16079  Hom chom 16174  Catccat 16546  Invcinv 16626  Isociso 16627  TermOctermo 16860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-cat 16550  df-cid 16551  df-sect 16628  df-inv 16629  df-iso 16630  df-termo 16863
This theorem is referenced by:  termoeu1w  16890
  Copyright terms: Public domain W3C validator