Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Structured version   Visualization version   GIF version

Theorem tendospcanN 36629
Description: Cancellation law for trace-perserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b 𝐵 = (Base‘𝐾)
tendospcan.h 𝐻 = (LHyp‘𝐾)
tendospcan.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendospcan.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendospcan.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendospcanN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑆(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐺(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18 𝐻 = (LHyp‘𝐾)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendospcan.e . . . . . . . . . . . . . . . . . 18 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocnv 36627 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) = (𝑆𝐺))
543adant3l 1362 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆𝐺) = (𝑆𝐺))
65coeq2d 5317 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
7 simp1 1081 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1082 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝑆𝐸)
9 simp3l 1109 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
10 simp3r 1110 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
111, 2ltrncnv 35750 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
127, 10, 11syl2anc 694 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
131, 2, 3tendospdi1 36626 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
147, 8, 9, 12, 13syl13anc 1368 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
156, 14eqtr4d 2688 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1615adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1716eqeq1d 2653 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵)))
18 simpl1 1084 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1085 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝑆𝐸)
20 simpl3l 1136 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
211, 2, 3tendocl 36372 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1366 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐹) ∈ 𝑇)
23 simpl3r 1137 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
241, 2, 3tendocl 36372 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
2518, 19, 23, 24syl3anc 1366 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐺) ∈ 𝑇)
26 tendospcan.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
2726, 1, 2ltrncoidN 35732 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇 ∧ (𝑆𝐺) ∈ 𝑇) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2818, 22, 25, 27syl3anc 1366 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2918, 23, 11syl2anc 694 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
301, 2ltrnco 36324 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
3118, 20, 29, 30syl3anc 1366 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ∈ 𝑇)
32 simpr 476 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))
33 tendospcan.o . . . . . . . . . . . . . 14 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3426, 1, 2, 3, 33tendoid0 36430 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ((𝐹𝐺) ∈ 𝑇 ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵))) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3518, 19, 31, 32, 34syl112anc 1370 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3617, 28, 353bitr3d 298 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝑆 = 𝑂))
3736biimpd 219 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) → 𝑆 = 𝑂))
3837impancom 455 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) → 𝑆 = 𝑂))
3938necon1d 2845 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂 → (𝐹𝐺) = ( I ↾ 𝐵)))
40 simpl1 1084 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpl3l 1136 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐹𝑇)
42 simpl3r 1137 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐺𝑇)
4326, 1, 2ltrncoidN 35732 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4440, 41, 42, 43syl3anc 1366 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4539, 44sylibd 229 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂𝐹 = 𝐺))
46453exp1 1305 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → (𝑆𝑂𝐹 = 𝐺)))))
4746com24 95 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → (𝑆𝐸 → (𝑆𝑂𝐹 = 𝐺)))))
4847imp5a 623 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐸𝑆𝑂) → 𝐹 = 𝐺))))
4948com24 95 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐸𝑆𝑂) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))))
50493imp 1275 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))
51 fveq2 6229 . 2 (𝐹 = 𝐺 → (𝑆𝐹) = (𝑆𝐺))
5250, 51impbid1 215 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cmpt 4762   I cid 5052  ccnv 5142  cres 5145  ccom 5147  cfv 5926  Basecbs 15904  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  TEndoctendo 36357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tendo 36360
This theorem is referenced by:  dihmeetlem13N  36925
  Copyright terms: Public domain W3C validator